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Abstract

This article compiles my recent and on-going investigations of the
existence of general equilibria and their welfare assessments in “large-
square” economies, with a special emphasis on demonstrations of the
strength of the hyperfinite methodology over the alternative measure-
theoretic approach.

Hyperfinite analysis has emerged as a powerful alternative in the
proofs where finite/infinite linkages are crucial and subtle, as evident
in Average Convexity Theorems and Extension Properties,
on the one hand, and derivations of finite implications in the forms

∗This is an outgrowth from my Final Lecture delivered on February 4, 2015 on the
occasion of my retirement from Chiba University, and therefore mainly retrospective in
nature. However, newly supplemented Section 5 gives an extensive account of the strands
of my on-going researches at Nishogakusha University to be reported in my Monograph
[3] (In Preparation).

†Disclaimer: Throughout this article, three nomenclatures “Hyperfinite Analysis,”
“Hyperreal Analysis” and “Nonstandard Analysis” are used interchangeably, as many
researchers in this field tend to do with particular “superstructures” on mind of Finite
Numbers, Real Numbers, and Standard Analysis, respectively, depending on the nature
of the problems we tackle.

‡Acknowledgments: I thank my former and present colleagues for long-time pleasant
association and continued moral support.
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of Asymptotic Interpretations and Elementary Theorems,
on the other. In quite a few interesting cases we have managed to
get rid of “external” arguments from the original hyperfinite proofs,
to complete elementary proofs, explicating the convergence speeds in
terms of the size of the economy.

The Loeb measure has also proven complementary, rather than
alternative, in establishing standard measure-theoretic results for a
large class of measure spaces that arise in economics, by converting
the comparable results established first by hyperfinite analysis.

Besides the well cultivated research subjects, the present report
includes, as promising applications, some important but overlooked
research agenda concerning the mixed markets with “large” agents
together with an ocean of “small” agents, that may help to shed light
on the exact nature of the market power in the presence of an infinite
variety of differentiated commodities.
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1 Introduction

1.1 The Scope of Researches

In order to investigate the existence of general equilibria and their welfare
assessment comprehensively in such diverse economic situations as intertem-
poral resource allocations over an infinite time horizon, incomplete markets
under uncertainty, commodity differentiation, and economic location, I have
idealized perfectly competitive economies arising in the afore mentioned sit-
uations by “Large-Square (or Large2) Economies,” i.e., with infinitely many
agents and infinitely many contingent commodities, with a due emphasis on
the appropriate choice of “myopic” topologies endowed on the commodity
space in the respective context.

• Economic Myopia: More specifically, implicit commonly in contin-
uous preferences in such “myopic” topologies as the Mackey topology
TM in the context of intertemporal exchanges and the weak-star topol-
ogy Tw∗ for commodity differentiation is the myopic economic behavior
in the sense that considerations of sufficiently large but finitely many
matters dominate the agent’s preference judgments with the additional
considerations of matters in the “tail” being incapable of overturning
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the original judgment1. This will suffice to ensure the Extension
Property to be exploited in Theorem 2 of Section 2 in order to
extend the sufficiently large number of partial equilibrium analyses to
a full fledged general equilibrium analysis.

• Average Convexity: For a general class of “Large-Square Economies”
which admit nonconvex preferences typical of risk (or extremity) loving
preferences and/or the nonconvex commodity space due to commod-
ity indivisibility in the context of exchange economies (plus nonconvex
technologies exhibiting increasing returns to scale, when the economies
are extended to include production activities), I have established the
emergence of pseudo-markets by way of the existence of approximately
competitive equilibria therein, and their welfare properties as stated
in terms of the equivalence of approximate equilibrium allocations and
their cooperative counterparts, in particular, the core, the value and
the bargaining set allocations.

– Even in the presence of infinitely many commodities, individual
anomalies due to nonconvex preferences are “approximately” sal-
vaged as average convexity as well as upper hemicontinuity of the
aggregate demand, when summed over “sufficiently many” agents.

– Even with an introduction of infinitely many indivisible commodi-
ties, a postulate for (at least) one perfectly divisible commodity,
say “money” together with accordingly modified preferences, will
suffice to contain those making anomalous choices within a “neg-
ligible” subgroups, and consequently restore the desired upper
hemicontinuity of aggregate demand, thus the money is function-
ing to smoothen out transactions.

It turns out that incorporations of nonconvexities have particularly awak-
ened our awareness of the underlying similarity of the “Market Thickness”
Requirement and the“Relative Size” Requirement between the space of agents
and that of commodities. This will be discussed in 5.3.4.

Besides the perfectly competitive extremity, I became aware that impor-
tant overlooked research agenda await serious investigations, concerning the

1This is quite in contrast to the continuous preferences on finite dimensional commodity
spaces, where all topologies but the discrete topology are equivalent in the sense that
continuous preferences in one topology are also continuous in other topologies. Therefore,
“continuity” of preferences on finite dimensional commodity spaces is not a behavioral
hypothesis, but a mere mathematical requirement, or at best in exclusion of such anomalies
as discontinuous choices inherent to “Lexicographic orderings.”
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mixed markets with “large” agents together with an ocean of “small” agents,
that may help to shed light on the exact nature of the market power in the
presence of an infinite variety of differentiated commodities. Some findings
are reported in 5.3.6.

1.2 The Methodology

I have applied Nonstandard (Hyperreal, or Hyperfinite) Analysis
to General Equilibrium Analysis and Welfare Economics (No-
mura (1981), (1984a), (1984b), (1985), (1989), (1986), (1992c), (1993a),
(1993b), (1995), (1998a) and (1999)).

I have demonstrated convincingly the strength of Nonstandard Analy-
sis over the alternative “continuum” characterization in deducing asymp-
totic interpretations and preferably elementary proofs for the “real” finite
economies of the limit results on the existence of general equilibria and their
welfare assessments established for the limit double-hyperfinite “Large-Square
Economies.”

As two such strengths, I may emphasize on

(1) the convergence speed explicated in Elementary Theorems (No-
mura (1984a), (1985), (1986), (1992c), (1993a), (1995) and (1998a))
via Nonstandard Analysis in terms of the ever increasing number of
agents,

and on

(2) the “market thickness,” or the “relative size” requirement that the
number of commodities be “sufficiently smaller” than the number of
agents, in the specific sense that may be deduced from the hypothesis
explicated in the Nonstandard analogue of Shapley-Folkman Aver-
age Convexity Theorem (Nomura (1981), (1992c), (1993a) and
(1995)).

The strength (1) is all the more evident in the analysis of mixed markets
with “large” traders which seem to have been overlooked for a long time, and
invincibility of which may be overturned with the aid of hyperfinite analysis.
We shall take up this problem and report some new results in the subsequent
5.3.6
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1.3 Citations

• My Ph.D. dissertation at the Johns Hopkins University,Nomura (1984a),
supervised by Professors M. Ali Khan and Peter K. Newman, consists
of Three Essays: Essay 1 was circulated as Nomura (1984b); Essay
2 was presented to the North American Winter Meeting of the Econo-
metric Society, Washington D.C. as Nomura (1981); and Essay 3,
the revision of which was later published in Journal of Economic The-
ory as Nomura (1993a). This dissertation is cited in Salim Rashid’s
monograph (1987) on the applications of Nonstandard Analysis to the
studies of large economies.

• My Journal of Economic Theory paper, Nomura (1993a), is recog-
nized by PierCarlo Nicola (2000, p.405) among Mainstream Mathe-
matical Economics in the 20th Century (Title of the Book) as: “No-
mura (1993[a]) studies the existence of approximate equilibria [of infi-
nite dimensional economies] under nonconvex preferences.”

• The usefulness of an extension of Shapley-Folkman Average Con-
vexity Theorem to infinite dimensional ranges established in the
above Nomura (1993a, Lemma 1; Also quoted as Thoerem 8 in the
subsequent Section 4) is not tarnished even today, as vindicated by
the fact that it is still quoted in the recent Positivity paper by Ali
Khan and Kali Rath（2013).

• By a resort to the preceding Shapley-Folkman Average Con-
vexity Theorem of Infinite Dimensional Ranges, I circulated
Core Equivalence Theorems for Large-Square Economies
in Nomura (1992c, Theorem 1; Quoted as Theorem 6 in the sub-
sequent Section 3), and presented Bargaining Set Equivalence
Theorems for Large-Square Economies to the Econometric So-
ciety Seventh World Congress, and is circulated as Nomura (1995,
Theorem 1; Quoted asTheorem 7 in Section 3). Nomura (1992c)
received citations from Bob Anderson and Bill Zame’s Econometrica
paper (1997), and their Economic Theory paper (1998) with detailed
discussions.
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2 Existence of Approximate Equilibria in

Large-Square Exchange Economies

R∞(N), or R∞ in short, is the space of real-valued sequences. Its
subspaces R+

∞, Rd
∞, to be introduced in the subsequent Theorems, or the

bounded subspaces ℓ+∞, ℓd∞ with the norm ∥ ∥∞ will serve as the commod-
ity spaces over an infinite horizon, or the space of Mas-Colell’s “individual
commodity bundles” defined on the space of commodity characteristics (No-
mura (1981, 1992c, 1993a, and 1995)).

The commodity spaces will be endowed alternatively with the Mackey
topology TM or the weak topology Tw, which is the strongest or the weakest
topology, respectively, that is consistent with the duality ⟨ℓ∞, ℓ1⟩.

Alternatively, a Hilbert space L2 of square-integrable martingales is a
natural candidate for the space of state-contingent claims under uncertainty,
with arbitrage prices taking values in its dual L2 (Nomura (1986)).

The space of preferences Pmo, Podd, Pidd ⊂ P((R+
∞, T )×(R+

∞, T )), which
need not be convex, will be endowed with Narens’ compact topology C on
closed subsets or the Hausdorff uniformity UH induced from TM or Tw on ℓ∞.

Transfer Principle: By transfer, with respect to both n and k, of the
standard existence result of approximate equilibria for a finite exchange
economy En,k : A → Pmo × Rk

+ with |A| = n ∈ N and k ∈ N, and after
some fine tuning, we have:

Theorem 1 (Nomura (1981, Theorem 3), Nonstandard Truncated).
Let an internal map Eν,ω : A → ∗Pν

mo × ∗Rν
+ with |A| = ω ∈ ∗N − N

be a double hyperfinite exchange economy with the ν-dimensional truncated
commodity space, where ν ∈ ∗N−N.

Suppose Eν,ω satisfies

(a) Integrability of Initial Endowments : For all a ∈ A, ∥e(a)∥1 is finite.∑
a∈A e(a)

ω
� 0, and e(a) is TM - or Tw-S-integrable,

(b) Compactness of Preferences : For all a ∈ A, ≻a∈ ∗Pν
mo is C-near-

standard,

and
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(c) Market Thickness :
ν√
ω

≃ 0.

Then, there exist p ∈
{
p ∈ ∗Rν

+

∣∣∣ ∥p∥∞ ≤ 1, pi ≥ 1√
ω

(∀i ∈ {1, ..., ν})
}
,

an assignment g : A → ∗Rν
+, and an internal subset S ⊂ A such that

(1)
|S|
ω

≃ 1,

(2) for all a ∈ S, g(a) ∈ dν(p, a),

and

(3)

∑
a∈A g(a)

ω
≲ 0.

Moreover,

(4) p is TM - or Tw-near-standard, and pi � 0 for all i ∈ {1, ..., ν},
and

(5) there exists T ⊂ S such that
|T |
ω

≃ 1, and for all a ∈ T , g(a) + e(a) is

TM - or Tw-near standard.

Extension Property: Theorem 2 establishes the extensibility of the
partial equilibrium existence result (Theorem 1) with ∗Rν

+, a hyperfinite
ν-truncation of the listing of commodities, to the general equilibrium result
with the full-fledged ∗-transform ∗R+

∞( ∗N) of the basic commodity space
R+

∞(N). This step takes care of the external nature of the countable
infinity by resorting to the economic myopia implicit in the TM - or Tw-
continuous preferences, i.e., (∀x, y, z ∈ ℓ+∞ ⊂ R+

∞) x ≻ y ⇒ x ≻ y + ẑk for
sufficiently large k ∈ N, where ẑk is the “tail” of z consisting of ẑik = 0 for
i = 1, ..., k and ẑik = zik for i = k + 1, ...

Theorem 2 (Nomura (1981, Theorem 5), Nonstandard). Let Eω :
A → ∗Pmo × ∗R+

∞ be a hyperfinite exchange economy constructed from Eν,ω
by choosing.

(i) the identical set of traders A, where |A| = ω ∈ ∗N−N,

and by assigning to each a ∈ A
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(ii) ≻′
a, the nonstandard extension of ◦ ≻a, the standard part of ≻a∈ ∗Pmo,

and

(iii) I(a), the nonstandard extension of ◦e(a), the standard part of e(a).

Let p ∈
{
p ∈ ∗R+

∞

∣∣∣ ∥p∥∞ ≤ 1, pi ≥ 1√
ω

(∀i ∈ ∗N)

}
, g : A → ∗R+

∞ and

S ⊂ A be as described in Theorem 1. Denote by pc the nonstandard exten-
sion of ◦p, the standard part of p, and write p = pc + p∞.

Define f : A → ∗R+
∞ by

f i(a) =


gi(a) + ei(a)− I i(a)− pi∞(Ii(a)−ei(a)−gi(a)))

pic
for 1 ≤ i ≤ ν

p.(I(a)−e(a))

pν+1
c

for i = ν + 1

0 for i ≥ ν + 2.

Then,

(1) pc ∈ ∗ℓ+1 ,

(2) for all a ∈ S, f(a) ∈ d(pc, a),

and

(3)

∑
a∈A f(a)

ω
≲ 0.

Asymptotic Interpretations2: The asymptotic interpretation (The-
orem 3) for a properly defined sequence of finite economies {En} follows
by contradiction: Suppose to the contrary. Then, we can find a contra-
diction to what we have proven in Theorem 2 for the nonstandard limit
economy Eω.

Construct from Eω a sequence of finite exchange economies {En} by the
following procedure:

(i) Choose a finite subset An ⊂ A so that |An| → ∞ as n → ∞;

(ii) Assign to each a ∈ A, ◦ ≻a and ◦e(a), the standard parts of ≻a and
e(a), respectively.

2More detailed discussions will be given in the subsequent 5.3.1.
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Theorem 3 (Nomura (1981, Theorem 1), Asymptotic Interpretation).
Let En : An → Pmo×R+

∞ be a sequence of finite exchange economies as defined
above.

Then,

(1) there exists K ⊂ Pmo compact in C such that ◦ ≻a∈ K for all a ∈ An,

and

(2)

∑
a∈An

◦e(a)

|An|
< ∞, and En ⊂ An and

|En|
|An|

→ 0 imply

∑
a∈An

◦e(a)

|An|
→

0.

Moreover, for any δ > 0, there exists n̄ ∈ N such that, for every En,
n ≥ n̄, there exist a price pn ∈ ℓ+1 and a net assignment fn : An → R∞
satisfying

(3)
|{a ∈ An| fn(a) ∈ dn(pn, a)}|

|An|
≥ 1− δ,

and

(4)

∑
a∈An

fn(a)

|An|
≤ δ.

Elementary Approach3: It is high time to exploit the insights gained
in carrying out the nonstandard proof of Theorems 1 and 2, and build
the following elementary proof for the fixed finite economy E from the
scratch.

Assumption 1 (Finite Spannability): Every d(p, a) has a finite family of
convex subsets dj(p, a), j = 1, ..., κ(a) of d(p, a) such that

d(p, a) =

κ(a)∪
j=1

dj(p, a).

For d(p, a) ⊂ R∞, the radius of d(p, a) is rad(d(p, a)) = inf
x∈R∞

sup
y∈d(p,a)

∥x− y∥2,

and the inner radius of d(p, a) is r(d(p, a)) = sup
x∈con d(p,a)

inf
S⊂d(p,a) spansx

rad(S).

3More detailed discussions on the scope and the limitations of the Elementary Approach
will be given in the subsequent 5.3.2.
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Assumption 2 (Bounded Nonconxexity): There exits an M ∈ R+, such
that r(d(p, a)) ≤ M for all a ∈ A.

Theorem 4 (Nomura (1993a, Theorem 1), Elementary). Let E : A →
Pmo ×R+

∞ with |A| = n be a finite exchange economy with countably many

commodities. Then, there exist p ∈ ∆ =

{
p ∈ R+

∞

∣∣∣ p.∑
a∈A

e(a) ≤ 1, p ≫ 0

}
and a net allocation g(a) ∈ con d(p, a).

Suppose further that E satisfies Assumptions 1 and 2.
Then, for any such g, there exists a selection f(a) ∈ d(p, a) such that

1

n

∥∥∥∥∥∑
a∈A

f(a)

∥∥∥∥∥
2

≤ 1

n

∥∥∥∥∥∑
a∈A

(f(a)− g(a))

∥∥∥∥∥
2

≤ 2M√
n
.

For a type-decomposable economy to be defined in the subsequent Corol-
lary 1, Assumptions 1 and 2 take the following forms, respectively.

Assumption 1’ (Finite Spannability): Every dt(p) has a finite family of
convex subsets djt(p), j = 1, ..., κt such that

dt(p) =
κt∪
j=1

djt(p).

Assumption 2’ (Bounded Nonconvexity): There exits ϵ ∈ R+ such that
for all t = 1, ..., T ,

r(dt(p))√
nt

≤ ϵ.

Corollary 1 (Nomura (1993a, Corollary 1), Elementary). Let
E : A → Pmo × R+

∞ with |A| = n be a “type-decomposable” finite exchange
economy with countably many commodities, type-decomposable in the sense
that A has a disjoint partition At, t = 1, ..., T , the group of consumers of type

t, where |At| = nt and
T∑
t=1

nt = n such that d(p, a) = dt(p) for all a ∈ At.

Then, there exist

p ∈ ∆ =

{
p ∈ R+

∞

∣∣∣ p.∑
a∈A

e(a) ≤ 1, p ≫ 0

}
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and a net allocation g(a) ∈ con d(p, a)
Suppose further that E satisfies Assumptions 1’ and 2’.
Then, for any such g, there exists a selection f(a) ∈ d(p, a) such that

1

n

∥∥∥∥∥∑
a∈A

f(a)

∥∥∥∥∥
2

≤ 1

n

∥∥∥∥∥∑
a∈A

(f(a)− g(a))

∥∥∥∥∥
2

≤ 2ϵ

√√√√ T∑
t=1

(nt

n

)2
.

In the presence of the nonconvexity due to commodity indivisibility, where
natural candidate for the commodity space is

Rd
∞ =

{
x ∈ R+

∞| xi+1 ∈ N ∪ {0}(∀i ∈ N)
}

embodying the minimum requisite of at least one perfectly divisible commod-
ity, say x1 ≡ xh ∈ R+, the following hypothesis serves to secure the desired
upper hemicontinuity of the convex hull of the so-called “Debreu-mapping”
whose fixed point characterizes a pair of prices and a net allocation close the
the approximate equilibrium.

In order to overcome anomalies caused by the nonconvex commodity
space, Pmo needs to be restricted to Podd, where ≻∈ Podd exhibits the
overriding desirability of the perfectly divisible commodity : (∀x ∈ Rd

∞) (∃ξ
finite)[ξu1 ≻ x], where u1 = (1, 0, ...) ∈ Rd

∞.
Furthermore, for those inconvenienced by the commodity indivisibility,

d(p, a), not upper hemicontinuous any longer, needs to be weakened by in-
corporating the satisficing behavior: Consume so that no superior point is
cheaper. Accordingly, define the weak excess demand set by

dw(p, a) =
{
z| (z + e(a)) ∈ Rd

∞, p.z ≤ 0, (∀y ∈ Rd
∞) y ≻a (z + e(a)) ⇒ p.y ≥ p.e(a)

}
.

Assumption 3 (Dispersion Hypothesis): Let eh(a) denote the amount of
the perfectly divisible commodity in agent a’s initial endowment. For any
given countably many values αi ∈ R+, i ∈ N, these exists δ ∈ [0, 1] such that∑

i∈N

∣∣{a ∈ A| eh(a) = αi

}∣∣ ≤ δ.n.

Or alternatively, further restrict the preferences to Pidd, those that exhibit
the indispensability of the perfectly divisible commodity : x, y ∈ Rd

∞, xh = 0,
yh > 0 ⇒ y ≻ x.

Assumption 4 (Indispensability of the Perfectly Divisible Commodity):
For all a ∈ A, ≻a∈ Pidd.

12



Theorem 5 (Nomura (1993a, Theorem 2), Elementary). Let Ed :
A → Podd × Rd

∞ with |A| = n be a finite exchange economy with countably
many indivisible commodities,. i.e., an economy constructed with Rd

∞ and
consequently Podd in place of R+

∞ and Pmo, respectively in the definition of
E .

Suppose Ed satisfies Assumption 3, the Dispersion Hypothesis.
Then, there exists a subset E ⊂ A with |E| ≥ (1 − δ).n, where δ is as

specified in Assumption 3, such that there exist

p ∈ ∆ =

{
p ∈ R+

∞

∣∣∣ p.∑
a∈A

e(a) ≤ 1, p ≫ 0

}

and a net allocation g(a) ∈ con d(p, a) for all a ∈ E and g(a) ∈ con dw(p, a)
for all a ∈ A− E .

Suppose further that Ed satisfies Assumptions 1 and 2.
Then, for any such g, there exists a selection f with f(a) ∈ d(p, a) for

every a ∈ E and f(a) ∈ dw(p, a) for every a ∈ A− E such that

1

n

∥∥∥∥∥∑
a∈A

f(a)

∥∥∥∥∥
2

≤ 1

n

∥∥∥∥∥∑
a∈A

(f(a)− g(a))

∥∥∥∥∥
2

≤ 2M√
n
.

In a type-decomposable economy, where the consumers’ characteristics
are identical within the group of the same type, Assumption 3 takes the
following special form:

Assumption 3’ (Dispersion Hypothesis): Let eht denote the amount of the
perfectly divisible commodity in type t agent’s initial endowment. For any
given countably many values αi ∈ R+, i ∈ N, these exists δ ∈ [0, 1] such that∑

i∈N

{
nt| eht = αi

}
≤ δ.n.

Corollary 2 (Nomura (1993a, Corollary 2), Elementary). Let
Ed : A → Podd ×Rd

∞ with |A| = n be a “type-decomposable” finite exchange
economy with countably many indivisible commodities, i.e., A has a disjoint

partition {At ⊂ A| t = 1, . . . , T} with |At| = nt and
T∑
i=1

nt = n such that

≻a =≻t and e(a) = et, and consequently d(p, a) = dt(p) and dw(p, a) = dwt(p)
for all a ∈ At, t ∈ {1, . . . , T}.

Suppose Ed satisfies Assumption 3’, the Dispersion Hypothesis.
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Then, there exists a subset Γ ⊂ {1, . . . , T} with
∑
t∈Γ

nt ≥ (1−δ).n, where

δ is as specified in Assumption 3’, such that there exist p ∈ ∆ and a net
allocation g with g(a) ∈ con dt(p) for all a ∈ At, t ∈ Γ and g(a) ∈ con dwt(p)
for all a ∈ At, t ∈ {1, . . . , T} − Γ.

Suppose further that E satisfies Assumptions 1’ and 2’.
Then, for any such g, there exists a selection f with f(a) ∈ dt(p) for all

a ∈ At, t ∈ Γ and f(a) ∈ dwt(p) for all a ∈ At, t ∈ {1, . . . , T}−Γ such that

1

n

∥∥∥∥∥∑
a∈A

f(a)

∥∥∥∥∥
2

≤ 1

n

∥∥∥∥∥∑
a∈A

(f(a)− g(a))

∥∥∥∥∥
2

≤ 2ϵ

√√√√ T∑
t=1

(nt

n

)2
.

Corollary 3 (Nomura (1993a, Corollary 3), Elementary). Sup-
pose Ed satisfies Assumption 4, Indispensability of the Perfectly Divisible
Commodity, instead of Assumption 3, in addition to Assumptions 1 and 2;
or, in the group-decomposable case, instead of Assumption 3’, in addition
to Assumptions 1’ and 2’. Then, the conclusions of Theorem 5 hold with
E = A, and those of Corollary 2 with Γ = {1, . . . , T}.

3 Core Equivalence and Bargaining Set Equiv-

alence Theorems for Large-Square Economies

Given a finite exchange economy E as defined in Theorem 4, a coalition
is a nonempty subset of A. A coalition S can improve upon an allocation f
if there exists a function g : S → R+

∞ such that g(a) ≻a f(a) for all a ∈ S,

and
∑
a∈S

g(a) ≤
∑
a∈S

e(a).

The core of E , C(E), is the set of all allocations which cannot be improved
upon by any coalition.

We now give a formal statement of the assumptions, comparable to the
preceding Assumptions 1 and 2, that enable us to secure the desired average
convexity of the per capita better-than set as a subset of R∞ to be defined
relative the the core allocations.

Assumption 5 (Finite Spannability): Given f ∈ C(E), define ϕ(a) =
{x − e(a) ∈ R∞|x ≻a f(a)(∀a ∈ A)}. Then, every ϕ(a) has a finite family
of convex subsets ϕj(a), j = 1, ..., κ(a) of ϕ(a) such that

ϕ(a) =

κ(a)∪
j=1

ϕj(a).

14



Assumption 6 (Bounded Nonconxexity): There exits an M ∈ R+, such
that r(ϕ(a) ∪ {0}) ≤ M for all a ∈ A.

Theorem 6 (Nomura (1992c, Theorem 1), Elementary Core Equiv-
alence). Let E : A → Pmo ×R+

∞ with |A| = n be a finite exchange economy

satisfying
∑
a∈A

e(a) ≫ 0.

Suppose further that E satisfies Assumptions 5 and 6.

Then, given f ∈ C(E), there exists p ∈

{
p ∈ R+

∞

∣∣∣ p.∑
a∈A

e(a) = 1

}
such

that

(1)
1

n

∑
a∈A

|p. (f(a)− e(a))| ≤ 2
√
2M

n
3
4

,

(2)
1

n

∑
a∈A

|inf {p. (f(a)− e(a)) | x ≻a f(a)}| ≤
2
√
2M

n
3
4

.

Given (S, g), an objection to the allocation f , as introduced in the pre-
ceding Core Equivalence Theorem, (T, h) is a counterobjection to (S, g)
if:

(a)
∑
a∈T

h(a) ≤
∑
a∈T

e(a);

(b) h(a) ≻a g(a) for all a ∈ T ∩ S, and h(a) ≻a f(a) for all a ∈ T \ S

An objection (S, g) is said to be justified if there is no counterobjection
to it. The Mas-Colell Bargaining Set of E , BM(E) is the set of all allocations
against which there is no justified objection.

The following assumptions are comparable to the preceding Assumptions
1 and 2 (or 1’ and 2’), or 5 and 6, and serve to ensure the desired average
convexity of the per capita aggregate demand-cum-endowment set as a sub-
set of R+

∞, which was conceived as a natural analogue of Mas-Colell’s price
characterization.

Assumption 7 (Finite Spannability): Every D(p, a) has a finite family of
convex subsets Dj(p, a), j = 1, ..., κ(a) of D(p, a) such that

D(p, a) =

κ(a)∪
j=1

Dj(p, a).

15



Assumption 8 (Bounded Nonconxexity): There exits an M ∈ R+, such
that r (D(p, a) ∪ {e(a)}) ≤ M for all a ∈ A.

Theorem 7 (Nomura (1995, Theorem 1), Elementary Bargaining Set
Equivalence). Let E : A → Pmo × R+

∞ with |A| = n be a finite exchange

economy satisfying
∑
a∈A

e(a) ≫ 0..

Given f ∈ BM(E), there exists p ∈

{
p ∈ R+

∞

∣∣∣ p.∑
a∈A

e(a) = 1

}
such that

f(a) ∈ con (D(p, a) ∪ {e(a)}) for all a ∈ A.
Suppose further that E satisfies Assumptions 7 and 8.
Then, for any such f , there exists a selection f̃ : a → R+

∞ such that

(1) f̃ ∈ D(p, a) ∪ {e(a)} for all a ∈ A

and

(2)
1

n

∥∥∥∥∥∑
a∈A

(
f̃(a)− e(a)

)∥∥∥∥∥
2

≤ 1

n

∥∥∥∥∥∑
a∈A

(
f̃(a)− f(a)

)∥∥∥∥∥
2

≤ 2M√
n
.

4 Average Convexity Theorems of Infinite Di-

mensional Ranges

For A ⊂ R∞, the radius of A is rad(A) = inf
x∈R∞

sup
y∈A

∥x− y∥2, and the inner

radius of A is r(A) = sup
x∈conA

inf
S⊂A spansx

rad(S).

Theorem 8 (Nomura (1993a, Lemma 1), Elementary): Let G : A →
R∞ with |A| = n.

Suppose

(i) every G(a) has a large but finite family of convex subsets Gj, j =
1, . . . , κ(a) of G(a) such that

G(a) =

κ(a)∪
j=1

Gj(a),

and
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(ii) for some M ∈ R+, r(G(a)) ≤ M for all a ∈ A.

Then, given y ∈ con
∑
a∈A

G(a), there exists x ∈
∑
a∈A

G(a) such that

∥x− y∥2 ≤ 2M
√
n.

Corollary 4 (Nomura (1993a, Lemma 2), Elementary). Let G : A →
R∞ with |A| = n.

Suppose A has a finite disjoint partition Ai, i = 1, ..., ρ where |Ai| = ni

and

ρ∑
i=1

ni = n, i.e., A =

ρ∪
i=1

Ai and Ai∩Aj = ⊘ if i ̸= j, such that G(a) = Gi

for all a ∈ Ai

Suppose further that

(i’) every Gi has a finite family of convex subsets of such that Gij, j =
1, . . . , κi such that

Gi =

κi∪
j=1

Gij,

and

(ii’) for some ϵ ∈ R+,
r(Gi)√

ni

≤ ϵ

for all i.

Then, given y ∈ con
∑
a∈A

G(a), there exists x ∈
∑
a∈A

G(a) such that

∥x− y∥2 ≤ 2ϵ

√√√√ ρ∑
i=1

n2
i .

5 Delineations of My Current Research Agenda

5.1 On the Value Allocations

v : P(A) → R, where P(A) denotes the power set of A, is superadditive if,
for disjoint subsets S, T ∈ P(A), S ∩ T = ⊘, v(S ∪ T ) ≥ v(S) + v(T ). A

17



finite game with side payments Γ = (A, v) consists of a finite set of agents A
and a superadditive function v such that v(⊘) = 0. The Shapley value of a
finite game Γ assigns to each agent a the expected marginal contribution sa
to all coalitions to which she belongs according to the formula

sa =
∑
S⊂A

(|S| − 1)!(|A| − |S|)!
|A|!

{v(S)− v(S\{a})} .

Let P denote the complete preorders ⪰ on Rk
+ that are transitive, con-

tinuous, and locally nonsatiated, but not necessarily convex. A utility func-
tion representing ⪰∈ P is a continuous function u : Rk

+ → R+ such that
u(x) ≥ u(y) ⇐⇒ x ⪰ y.

Given a non-atomic exchange economy E : (A,A, ν) → P × Rk
+ and a

family of utility functions u = {ua| a ∈ A}, one ua representing ⪰a, define a
game ((A,A), vu) by

vu(S) = max

{∫
S

ua(x(a))ν(da)
∣∣∣ ∫

S

xdν =

∫
S

edν, (∀a ∈ S)x(a) ∈ Rk
+

}
.

Denote the Shapley value of ((A,A), vu) by Sha = lim
|A|,|S|→∞

sa

∣∣∣
v(S)=vu(S)

, if it

exists at all ! (Indeed, the price characterization of the Shapley value due to
Wayne Shafer (1980) will serve as such limit in the subsequent 3.3.)

An allocation is a map f : A → Rk
+ such that

∫
A

fdν =

∫
A

edν. Denote

by V(E) value allocations for E . An allocation f ∈ V(E) def⇐⇒ (∃{ua| a ∈
A})(∀a.e. a ∈ A)ua(f(a)) = Sha.

Let Econ : (A,A, ν) → Pcon ×Rk
+ be a non-atomic convex exchange econ-

omy. Robert Aumann’s equilibrium existence theorem Aumann (1966, Main
Theorem) with nonconvex preferences and the convex commodity space,
when combined with his value equivalence theorem Aumann (1975, The-
orem 1) with convex preferences and commodity space, implies V(Econ) ̸= ⊘.

Proposition 1 (Aumann (1966, Main Theorem) and (1975, Theo-
rem 1), Measure-Based Value Existence): Given a non-atomic convex ex-
change economy Econ : (A,A, ν) → Pcon ×Rk

+, V(Econ) ̸= ⊘, i.e., there exist
{ua| a ∈ A}, an integrable function f : A → Rk

+ and S ∈ A such that
(i) ν(S) = 1,
(ii) (∀a ∈ S)ua(f(a)) = Sha

and
(iii)

∫
A
fdν ≤

∫
A
edν.
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Proposition 2 (Aumann (1975, Theorem 1), Measure-Based Value
Equivalence): Let Econ : (A,A, ν) → Pcon × Rk

+ be a non-atomic convex
exchange economy. Then, V(Econ) = W(Econ), i.e., given f ∈ V(Econ), there
exist p ̸= 0 and a measurable S ⊂ A such that

(i) ν(S) = 1;

(ii) (∀a ∈ S)f(a) ∈ D(p, a);
and

(iii)

∫
S

fdν ≤
∫
S

edν.

Let ∆ = {p ∈ Rk
+| ∥p∥1 = 1}. Define the expenditure function M :

P ×∆ ×Rk
+ → R+ by M(⪰, p, x) = min{p.x′| x′ ⪰ x}. If it is continuous,

then M(⪰, p, x) serves as a utility function representing ⪰. Indeed,

Proposition 3 (Shafer (1980)): Let the expenditure function M : P ×
∆ × Rk

+ → R+ be defined by M(⪰, p, x) = min{p.x′| x′ ⪰ x}. Then, M is
continuous in (⪰, p, x).

For each p ∈ ∆, consider the game ((A,A), v(p, .)) defined by

v(p, S) = max

{∫
S

M(⪰a, p, x(a)) ν(da)
∣∣∣ x(a) ∈ Rk

+,

∫
S

x dν =

∫
S

e dν

}
.

Then, v(p, .) : P(A) → R+ facilitates the price characterization of the Shap-
ley value of ((A,A), v(p, .)) as Sh(p) = {Sha(p)| a ∈ A}.

An allocation f : A → Rk
+ is a value allocation if there exists a p ∈ ∆

such that (∀a.e. a ∈ A)M(⪰a, p, f(a)) = Sha(p). The set of value allocations
for E : (A,A, ν) → P × Rk

+ is now defined, relative to a choice of p ∈ ∆,
and will be denoted Vp(E) in short.

A resort to the price characterization of the Shapley value, and therefore
Vp(E) in place of V(E), manages to eliminate the convexity requirement on
preferences in Aumann’s results. A generalization of the followings to admit
nonconvex consumption sets X ⊂ Rk

+ is also straightforward, and will be
carried out in the subsequent 5.3.1.

Theorem 9 (Nomura (1992b, Theorem 34), Measure-Based Value
Equivalence): Given a non-atomic exchange economy E : (A,A, ν) → P ×
Rk

+, there exists a p ∈ ∆ such that Vp(E) = W(E), i.e., given p ∈ ∆ and
f ∈ Vp(E), there exists a measurable S ⊂ A such that

4In Nomura (1992b), this Theorem was mixed up with Theorem 4 which was
mislabeled as Theorem 3, also quoted as Theorem 11 in the subsequent 5.1.1. The
proof is given in Nomura (1992b, Section 4).
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(i) ν(S) = 1;

(ii) (∀a ∈ S) f(a) ∈ D(p, a);
and

(iii)

∫
S

fdν ≤
∫
S

edν.

Theorem 10 (Nomura (1992b, Theorem 1), Measure-Based Value
Existence): Given a non-atomic exchange economy E : (A,A, ν) → P ×Rk

+,
there exists a p ∈ ∆ such that Vp(E) ̸= ⊘, i.e., there exist p ∈ ∆, an integrable
function f : A → Rk

+ and S ∈ A such that
(i) ν(S) = 1,
(ii) (∀a ∈ S)M(⪰a, p, f(a)) = Sha(p)

and

(iii)

∫
A

fdν ≤
∫
A

edν.

Remark 1: Theorem 10 for Vp(E) generalizes Theorem 4 of Wood-
ers and Zame (1987) for V(E), by accommodating more than finitely many
types and nonconvex preferences. In the light of Unequal Treatment
Theorems due to Green (1972) and generalized in Khan and Polemar-
chakis (1978, Theorems 1 and 2), their restriction of the core payoffs to
the class satisfying the Equal Treatment Property is all the more problem-
atic when one attempts at generalizations to non-replica sequences of finite
nonconvex exchange economies.

Remark 2: The outline of the proof is as follows: First prove the hyper-
finite limit result by transfer of the known finite result, as will be explained
in the subsequent 5.1.2. In the present case, the value convergence result
due to Wooders and Zame (1987, Theorem 1) is such finite result for the
derived game. After due care taken of the deduction of the results for the
hyperfinite economy from those for the derived game, apply the Loeb mea-
sure methodology to convert thus obtained hyperfinite result to the standard
measure-theoretic counterpart, which will be sketched in the 5.1.3.

In the subsequent detailed discussions in 5.3.1 on the strength of the hy-
perfinite approach over the measure-theoretic alternative, Theorems 9 and
10 will be cited as somewhat successful among the applications of Hyper-
real Analysis for the purpose of asymptotoic interpretations, because, as we
noted in the previous paragraph, the Transfer Principle, and the Loeb Mea-
sure procedure of the Hyperreal Analysis played a central role in deriving the
standard measure-theoretic results, which are otherwise unattainable.
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5.1.1 The Derived Game

The following definition of a technology is an adaptation of the characteriza-
tion due to Wooders and Zame (1987).

Let Ω = P×X be the space of consumers’ characteristics, where a generic
element ω = (⪰, e) specifies the consumer attribute in terms of the prefer-
ences and the initial endowment. When endowed with the closed convergence
topology, the closed nonempty subset P ⊂ P(X × X) becomes a separable
compact metrizable space (Hildenbrand (1974, B.II, Theorem 2), and
let d⪰ be the metric for the topology. Therefore, a metric dΩ will be given
by dΩ(⪰,⪰′) + ∥e− e′∥, where ∥ ∥ is the Euclidean norm.

Now, look upon the original finite exchange economy E as an attribute
function E : A → Ω with |A| finite. Then, for any subset S ⊂ A, define a pro-
file on Ω, f(E|S) : Ω → N ∪ {0}, by f(E|S)(ω) = | {a ∈ A| (⪰a, e(a)) = ω} |.
The set of profiles on Ω will be denoted byP (Ω). We write f(E|S) = 0 iff
(∃S ⊂ A)(∀ω ∈ Ω)[f(E|S)(ω) = 0]. Without loss of generality, f(E|S) = 0
iff S = ⊘.

f(E|S) ≤ f(E|S ′) iff (∀ω ∈ Ω)[f(E|S)(ω) ≤ f(E|S ′)(ω)]. Note that if
S ⊂ S ′, then f(E|S) ≤ f(E|S ′), but not vice versa.

For ω ∈ Ω, the profile χω0 is such that χω0(ω) = 0 if ω ̸= ω0 and χω0(ω0) =
1.

A technology of a pre-game with consumer attributes (Ω,Λ) consists of
a compact metrizable space of consumer attributes Ω and a function Λ :
P (Ω) → R+ with the following properties:

(i) Λ(0) = 0;

(ii) Superadditivity : Λ(f(E|S) + f(E|S ′)) ≥ Λ(f(E|S)) + Λ(f(E|S ′));

(iii) Individual Marginal Bound : (∃M ∈ R+)(∀ω ∈ Ω)(∀S ⊂ A)

[Λ(f(E|S) + χω) ≤ Λ(f(E|S) +M)];

(iv) Continuity : (∀S ⊂ A)(∀ω, ω′ ∈ Ω)(∀ϵ > 0)(∃δ > 0)

[dΩ(ω, ω
′) < δ =⇒ |f(E|S) + χω)− f(E|S) + χω′)| < ϵ].

In order to define a finite game with side payments Γ = (A, νE) as a derived
game from the technology (Ω,Λ), the worth of a coalition S will be given
by the characteristic function νE : 2|A| → R+ defined by νE(S) = Λ(f(E|S)).
Then, it is easy to check that νE is superadditive.

The following construction of the nonatomic game ((A,A, ν), ξ), derived
from the technology (Ω,Λ), with ξ to be interpreted as weights of coalitions,
is patterned after Wooders and Zame (1987, Section 9):

21



For A ∈ A with ν(S) ̸= 0, let αt =
ν(S ∩ At)

ν(S)
for each t. Then,

αt ≥ 0 for all t, and
T∑
t=1

αt = 1

Choose a sequence {Sk} of A, such that |Sk| → ∞ (and consequently

|Ak| → ∞), and
f(E|Sk)(ωt)

|Sk|
→ αt for each t.

Then, we can define a set function ξ : A → R+, which is interpreted
as weights of coalitions, such that

ξ(S) =

{
0 if ν(S) = 0,(

limk→∞
Λ(f(E|Sk))

|Sk|

)
ν(S) otherwise.

Theorem 11 (Nomura (1982b, Theorem 45)): Let ((A,A, ν), ξ) be a
nonatomic game derived from the technology (Ω,Λ).

Then, the Shapley value of ((A,A, ν), ξ) is in the core, i.e., there exists
p ∈ ∆ such that

(a) Pareto Optimality : Sh(p)(A) = νE(A);

and

(b) For all S ⊂ A, Sh(p)(S) ≥ νE(S).

Remark 3: When S’s reduce to single-element sets, (b) is strengthened
to

(c) Individual Rationality : For all a ∈ A, Sha(p) ≥ νE({a}),

i.e., the Shapley value coincides with the individually rational core.

5.1.2 Hyperfinite Limit Theorems for Value Allocations

Construct a hyperfinite exchange economy Eω from which the game (A, νEω) is
derived, on the one hand, and which is convertible to a standard measurable
economy E : (A,A, ν) → P×Rk

+ inTheorems 9 and 10 by the Loeb measure
methodology, on the other.

5Mislabeled as Theorem 3 in Nomura (1982b).
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Let (A, I(A), λ) be an internal hyperfinite space of agents, where A with
|A| = ω ∈ ∗N−N is endowed with an internal subset algebra I(A), and an

internal counting measure λ =
|S|
|A|

for all S ∈ I(A), which is easily checked

to be an internal finitely additive infinitesimal measure.
A hyperfinite exchange economy is an internal I(A)-measurable map Eω :

(A, I(A), λ) → ∗P × ∗Rk
+.

By transfer of Wooders and Zame (1987, Theorem 1), we have:

Theorem 12 (Nomura (1982b, Theorem 5.2), Hyperfinite Limit The-
orem in the Derived Game): Let (A, νEω) with |A| = ω ∈ ∗N−N be a hyper-
finite game obtained as the nonstandard extension of (A, νE) that is derived
from the technology (Ω,Λ).

Then, the Shapley value of (A, νEω) is in the core, i.e., there exists p ∈ ∗∆
such that

(a) Pareto Optimality : Sh(p)(A) = νEω(A);

and

(b) For all internal subsets S ⊂ A, (1/|S|) (Sh(p)(S)− νEω(S)) ≳ 0.

Remark 4: When S’s reduce to single-element sets, (b) is strengthened
to

(c) Individual Rationality : For all a ∈ A, Sha(p) ≳ νEω({a}).

The following Theorem 13 for the hyperfinite exchange economy Eω is
deduced from the preceding Theorem 12 by construction of the derived
game (A, νEω) from Eω.

Theorem 13 (Nomura (1982b, Theorem 5.1), Hyperfinite Limit The-
orem in the Original Economy): Let Eω : (A, I(A), λ) → ∗P × ∗Rk

+ be a
hyperfinite exchange economy with |A| = ω ∈ ∗N−N.

Then, there exists a value allocation in Eω, i.e., there exist p ∈ ∗∆, an
S-integrable function f : A → ∗Rk

+ and S ∈ I(A) such that

(i) λ(S) = 1;

(ii) For all a ∈ S, M(≻a, p, f(a)) = Sha(a);

and
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(iii)
∑
a∈A

f(a)λ(a) ≲
∑
a∈A

e(a)λ(a).

Remark 5: A generalization of Theorems 9 and 10 to accommodate
the nonconvex commodity space X ⊂ Rk

+ is straightforward with a resort to
an appropriate version of the Dispersion Hypothesis (D.H.). (D.H.)’s for Eω
and (A, νEω) are conceived with asymptotic interpretations in mind for finite
economies G = {En}, and the derived games thereof, and therefore, they are
the ∗-transform of (D.H.) in En and (A, νEn), respectively.

(D.H.) for G = {En} with nonconvex X ⊂ Rk
+ (Nomura (1982b,

Theorem 2)): For all En ∈ G, and for all (p, x) ∈ ∆× conX, and for
all α ∈ R+, there exists an M ∈ N such that

| {a ∈ A|M(⪰a, p, x) = α} | ≤ M.

(D.H.) for {(A, νEn))} with nonconvex X ⊂ Rk
+ (Dispersion with re-

spect to consumer attributes): For each a ∈ A and for all ϵ > 0, there
exists a δ > 0 such that

| {a′ ∈ A| dΩ ((⪰a, e(a)) , (⪰a′ , e(a
′))) < ϵ} | < δ|A|.

Thus, (D.H.) in each context reads as:

(D.H.) for Eω with nonconvex X ⊂ ∗Rk
+ (Nomura (1982b, Theorem

5.1); Also quoted as Theorem 13 in the above): For all (p, x) ∈∗

∆× con∗X, and for all α ∈ ∗R+,

λ ({a ∈ A|M(⪰a, p, x) = α}) ≃ 0

(D.H.) for E = st(Eω) with nonconvex X ⊂ Rk
+ (Nomura (1982b,

Theorem 1); Also quoted as Theorem 10 in 5.1): For all (p, x) ∈
∆× conX, and for all α ∈ R+,

µM(α) = ν ({a ∈ A|M(⪰a, p, x) = α}) = 0,

where µM(α) denotes the utilities distribution, generated from ν.
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(D.H.) for (A, νEω) with nonconvex X ⊂ ∗Rk
+ (Nomura (1982b, The-

orem 5.2); Also quoted as Theorem 12 in the above): For each
a ∈ A,

| {a′ ∈ A| dΩ ((⪰a, e(a)) , (⪰a′ , e(a
′))) ≃ 0} |

|A|
≃ 0.

(D.H.) for
(
A, νst(Eω)

)
with nonconvex X ⊂ Rk

+ (Nomura (1982b,
Theorem 46); Also quoted asTheorem 11 in 5.1.1): For each a ∈ A,

µΩ(a) = ν ({a′ ∈ A| dΩ ((⪰a, e(a)) , (⪰a′ , e(a
′))) = 0}) = 0.

5.1.3 Conversion of Hyperfinite Results to Standard Measure-
Theoretic Counterparts

In order to convert Eω into the standard measurable economy, we apply the
Loeb measure methodology, by looking upon the set of agents A, now as
a standard infinite set. Consumption characteristics are derived as those
associated with functionals on Loeb spaces.

We start with the conversion of the measurable space of agents. Let
(A,A, ν).be constructed as the Loeb measure space of (A, I(A), λ), denoted
by (A,L(I(A)), L(λ)), where L(I(A)) is the completion of σ(I(A)), the
smallest σ-algebra containing I(A), and L(λ) is the unique extension of st(λ)
to σ(I(A)). By Proposition 7 in the subsequent 5.3.3, ν is a countably
additive non-atomic measure.

A standard Loeb measure economy E : (A,A, ν) → P×Rk
+ is constructed

as st(Eω), the standard part map of Eω. Together with the following prop-
erties, which are immediate consequences of the Loeb measure spaces, the
Loeb measure economy thus constructed indeed qualifies as the standard
measurable economy for which Theorems 9 and 10 hold.

1. A standard Loeb measure exchange economy E : (A,A, ν) → P ×Rk
+,

constructed as st(Eω), is A-measurable.

2. P is compact in the topology of closed convergence.

3. e(a) is ν-integrable.

6Mislabeled as Theorem 3 in Nomura (1982b).
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5.2 Approximate Decentralization of Bargaining Sets

5.2.1 Alternative Characterizations of Bargaining Sets

• Aumann-Maschler Bargaining Set : The Aumann-Maschler bargaining
set of E , BAM (E), introduced in Aumann and Maschler (1964, Def-
inition 2.2.(20)), is a special case of the subsequent Geanakoplos δ-
bargaining set Bδ (E) restricting U to a single “leader”, i.e.,

BAM (E) = B 1
|A|

(E) .

• Geanakoplos Bargaining Set : Geanakoplos (1978, Section VI) modi-
fies the Aumann-Maschler characterization by requiring that an objec-
tion be proposed by a group U of leaders, consisting of a fixed small
fraction δ of the participants in the initial objection, who are to re-
frain from participating in a counterobjection coalition T (note well
the requirement T ∩ U = ⊘).

Let E : A → P×L+ be a finite exchange economy such that |A| ∈ N.

(S, U, g) is a δ-objection to an allocation f .3 if there exists a coalition,

i.e., a nonempty subset S ⊂ A, a set of “leaders” U ⊂ S with 0 ≦ |U |
|S| ≦

δ, and g : S → L+ such that

(a)
∑

a∈S g (a) ≦
∑

a∈S e (a) ;

and

(b) g (a) ⪰a f (a) for all a ∈ S with strict preference for at least
one a ∈ S .

(T, h) is a counterobjection to (S, U, g) if there exist a nonempty T ⊂ A
with T ∩ U = ⊘, and h : T → L+ such that

(c)
∑

a∈T h (a) ≦
∑

a∈T e (a) ;

and

(d) (i) h (a) ≻a g (a) for all a ∈ T ∩ S, (ii) h (a) ≻a f (a) for all
a ∈ T \ S.

A δ-objection is justified if there is no counterobjection to it.

The Geanakoplos δ-bargaining set of E , denoted by Bδ (E), is the set
of all allocations to which every δ-objection has a counterobjection.
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The Geanakoplos bargaining set BG (E) is expressed as

BG (E) =
∪

δ∈[0,1]

Bδ (E) .

• Zhou Bargaining Set : Zhou (1994, Definition 2.2) downsizes the Mas-
Colell bargaining set BM (E) by adding following restrictions on coun-
terobjections to define the Zhou bargaining set BZ (E):

(1)S ̸⊆ T ; (2)T ̸⊆ S; and (3)T ∩ S ̸= ⊘.

In particular, the “nonempty intersection property” (3) requires that a
counterobjection be formed from within an objecting coalition to void
the initial objection. A counterobjection (S, g) exercises a deterrent
effect on T ∩ S ̸= ⊘ from proposing the objection (S, g) in the first
place.

5.2.2 Known Results on Convergence of Bargaining Sets

TABLE 1
(Non-)Convergence of Various Bargaining Sets

Anderson, Trockel
Bargaining Sets Anderson (1998) and Zhou (1997)

Aumann-Maschler B.S. Convergence
BAM (E) (Theorem 4.4)

Geanakoplos B.S. Convergence
Bδ (E) (Theorems 3.4 and 3.6)

Mas-Colell B.S. Non-convergence
BM (E) (Theorem 3.3)

Zhou B.S. Non-convergence
BZ (E) (Theorem 3.3)

• Anderson (1998, Theorem 4.4) establishes convergence of BAM (E)
for E with Rk

+ as the commodity space (and with further restricted
preferences on Rk

+ than usual).

• Anderson (1998, Theorems 3.4 and 3.6) establish convergence of
Bδ (E) for E with the commodity space Rk

+.

• Certainly, BZ (E) ⊂ BM (E). Anderson, Trockel and Zhou (1997,
Theorem 3.3) show that BZ (E) needs not converge for replica sequences
{Er} with the commodity space Rk

+.
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5.2.3 Salvaging by “Modified” Convergence of Bargaining Sets

An atomless exchange economy is a measurable map Ẽ : (A,A, ν) → P×Rk
+

such that 0 ≪
∫
A
edν ≪ ∞.

Among the many characterizations of bargaining sets, consider in partic-
ular the Mas-Colell bargaining set of E , BM(Ẽ) consisting of all allocations to
which there is no justified weak objection, i.e., to which every weak objection
has a weak counterobjection.

The objection (S, g) to the allocation f is Walrasian if there exists p ̸= 0
such that

(i) (∀a.e. a ∈ S)(∀y ∈ Rk
+)y ⪰a g(a) ⇒ p.y ≥ p.e(a);

and
(ii) (∀a.e. a ∈ A\S)(∀y ∈ Rk

+)y ⪰a f(a) ⇒ p.y ≥ p.e(a).
Conditions (i), (ii) may be rewritten as:
(i’) (∀a.e. a ∈ S)p.g(a) ≥ p.e(a) ⇒ g(a) ∈ D(p, a);

and
(ii’) (∀a.e. a ∈ A\S)p.f(a) ≥ p.e(a) ⇒ f(a) ∈ D(p, a).

(That is, Walrasian objections possess a self selection property in that S is
formed by those who, at p, would rather demand g than f .)

Proposition 4 (Mas-Colell (1989, Proposition 1), Optimality
Lemma): Any Walrasian objection (S, g) to an allocation f is justified.

Proposition 5 (Mas-Colell (1989, Proposition 2), Existence
Lemma): Suppose an allocation f /∈ W(Ẽ). Then, there exists a Walrasian
objection (S, g) to f .

Combining these two Lemmata yields the following equivalence theorem.

Proposition 6 (Mas-Colell (1989, Theorem 1), Measure-Based
Bargaining Set Equivalence): Let a measurable map Ẽ : (A,A, ν) → P ×Rk

+

be an atomless exchange economy such that 0 ≪
∫
A
edν ≪ ∞. Then,

BM(Ẽ) = W(Ẽ), i.e., given f ∈ BM(Ẽ), there exist p ̸= 0 and a measur-
able S ⊂ A such that

(i) ν(S) = 1;

(ii) (∀a ∈ S)f(a) ∈ D(p, a);
and

(iii)

∫
S

fdν ≤
∫
S

edν.

For a finite exchange economy E : A → P × Rk
+, the following The-

orem 14 on the “modified” convergence of the Mas-Colell bargaining set
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salvages the nonconvergence property as exemplified by a counterexample
due to Anderson, Trockel and Zhou (1997, Example 3.1 and Theorem
3.3). Instead, Theorem 14 asserts “near-”equivalence of the Mas-Colell
bargaining set and the “modified-”Walrasian assignments in the following
specific sense:

• “Modified-” in the sense that each individual demand set is enlarged
to its union with her initial endowment point;

and

• “near-” in the sense that the modified-Walrasian assignments are de-
viant from the “near-”modified-Walrasian allocations that serve to de-
centralize the Mas-Colell bargaining set allocations with the deviations
measured by error terms convergent to 0 as the size of the economy
increases.

In short, Theorem 14 claims that a Mas-Colell bargaining set allocation
can be priced out as a near-modified-Walrasian allocation, which in turn may
be approximated by a modified-Walrasian assignment.

Let M = max {∥e (a)∥1 | a ∈ A} be the bound defined independently of
agents’ preferences. Given the Mas-Colell bargaining set allocation f , it is
always possible to find prices p supporting f as a near-modified-Walrasian
allocation, i.e., chosen from con (D (p, a) ∪ {e (a)}), which will further be

approximated within
kM√
n

by a modified-Walrasian selection f̃ from the exact

demand or her endowment, so that the degree of non-competitiveness as
measured by the “allocation-likeness” of f̃ , i.e., the per capita aggregate
divergence of the nearly decentralizing modified-Walrasian assignment from
the original Mas-Colell bargaining set allocation, is bounded in norm by
(k + 1)M√

n
.

Theorem 14 (Nomura (1998a, Theorem), “Modified” Convergence):
Let E : A → P × Rk

+ be a finite exchange economy with |A| = n, and
M = max {∥e (a)∥1 : a ∈ A}. Denote ∆ =

{
p ∈ Rl

+| ∥p∥∞ ≤ 1, p ≫ 0
}
.

Suppose f ∈ BM (E). Then, there exists p ∈ ∆ such that

f (a) ∈ con (D (p, a) ∪ {e (a)}) for all a ∈ A.

Furthermore, for any such f , there exists a selection f̃ : A → Rk
+ such

that
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(i) f̃ (a) ∈ D (p, a) ∪ {e (a)} for all a ∈ A;
and

(ii) ∑k
i=1max

{∑
a∈A

(
f̃ i (a)− f i (a)

)
, 0
}

n
≦ kM√

n
,

∑k
i=1max

{∑
a∈A

(
f̃ i (a)− ei (a)

)
, 0
}

n
≦ (k + 1)M√

n
.

Sketch of the Proof: The proof is patterned after Mas-Colell
(1989, Sections 3 and 4) for a measure space of agents and a finite number of
commodities. The proof consists of Lemmata 1 and 2, and the contrapos-
itive of the combined assertion of the two yields the desired result: If there
is no modified-Walrasian objection to the selection f̃ , within a distance con-
vergent to 0 from a Mas-Colell bargaining set allocation f ∈ BM(E) due to
the convexification involved, then f̃ is modified Walrasian.

Let (S, g) be a near-modified Walrasian objection to an allocation f , i.e.,
such that for all a ∈ S, p.g(a) ≤ p.e(a) =⇒ g(a) ∈ con(D(p, a) ∪ {e(a)}).
Let (S, g) be further approximated by a modified-Walrasian objection (S, g̃)
for which p.g̃ ≤ p.e(a) =⇒ g(a) ∈ (D(p, a) ∪ {e(a)} for all a ∈ S with error
terms satisfying∑k

i=1 max
{∑

a∈S

(
f̃ i (a)− f i (a)

)
, 0
}

|S|
≦ kM√

n
,

∑k
i=1max

{∑
a∈S

(
f̃ i (a)− ei (a)

)
, 0
}

|S|
≦ (k + 1)M√

n
, .

where M = max {∥e (a)∥1 | a ∈ A}.

1. Lemma 1 asserts that any modified Walrasian objection (S, g) is jus-
tified.

2. Lemma 2 asserts that if f is not a near-modified Walrasian alloca-
tion, then there is modified-Walrasian objection (S, g̃), by way of a
near-modified-Walrasian objection (S, g) within the same per capita di-
vergence terms as specified in Lemma 1.
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Lemma 1 (Nomura(1998, Lemma 1), Optimality Lemma): Given
an allocationf , let (S, g) be a near-modified Walrasian objection to f , i.e.,
nonempty S ⊂ A and g : S → Rk

+ be such that

(i)
∑
a∈S

g(a) ≤
∑
a∈S

e(a),

and

(ii) g(a) ⪰a f(a) for all a ∈ S, and g(a) ≻a f(a) for some a ∈ S,

and for some p ̸= 0

(iii) for all a ∈ S, p.g(a) ≤ p.e(a) =⇒ g(a) ∈ con (D(p, a) ∪ {e(a)}), and

(iv) for all a ∈ A \ S, p.f(a) ≤ p.e(a) =⇒ g(a) ∈ D(p, a) ∪ {e(a)}.

Given such objection to (S, g) to f , let (S, g̃) be a modified -Walrasian
objection, i.e., such that, in addition to (ii) and (iv), (i) is approximated as

(1) ∑k
i=1max

{∑
a∈S

(
f̃ i (a)− f i (a)

)
, 0
}

|S|
≦ kM√

n
,

and ∑k
i=1max

{∑
a∈S

(
f̃ i (a)− ei (a)

)
, 0
}

|S|
≦ (k + 1)M√

n
, .

where M = max {∥e (a)∥1 | a ∈ A},

and (iii) is strengthened to

(2) for all a ∈ S, p.g̃(a) ≤ p.e(a) =⇒ g̃(a) ∈ D(p, a) ∪ {e(a)}.

Let T ⊂ A and h : T → Rk
+. Then, for any (T, h), either

(a)
∑
a∈T

h(a) >
∑
a∈T

e(a),

or

(b) g̃(a) ⪰a h(a) for some a ∈ T ∩S, or f(a) ⪰a h(a) for some a ∈ T \S.

Lemma 2 (Nomura(1998, Lemma 2), Existence Lemma): Suppose
an allocation f is such that, for any p ̸= 0 and for some a ∈ A, f(a) /∈
con (D(p, a) ∪ {e(a)})

Then, given such f , there exists a near-modified-Walrasian objection (S, g)
to f , i.e., nonempty S ⊂ A and g : S → Rk

+ such that
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(i)
∑
a∈S

g(a) ≤
∑
a∈S

e(a),

and

(ii) g(a) ⪰a f(a) for all a ∈ S, and g(a) ≻a f(a) for some a ∈ S,

and for some p ̸= 0

(iii) for all a ∈ S, p.g(a) ≤ p.e(a) =⇒ g(a) ∈ con (D(p, a) ∪ {e(a)}), and

(iv) for all a ∈ A \ S, p.f(a) ≤ p.e(a) =⇒ g(a) ∈ D(p, a) ∪ {e(a)}.

Furthermore, for any such g, there exists a modified-Walrasian selection
g̃(a) ∈ D(p, a) ∪ {e(a)}such that, in addition to (ii) and (iv), (i) is approxi-
mated as

(1) ∑k
i=1max

{∑
a∈S

(
f̃ i (a)− f i (a)

)
, 0
}

|S|
≦ kM√

n
,

and ∑k
i=1max

{∑
a∈S

(
f̃ i (a)− ei (a)

)
, 0
}

|S|
≦ (k + 1)M√

n
, .

where M = max {∥e (a)∥1 | a ∈ A},

and (iii) is strengthened to

(2) for all a ∈ S, p.g̃(a) ≤ p.e(a) =⇒ g̃(a) ∈ D(p, a) ∪ {e(a)}.

Remark 6: It is worth emphasizing that the present “modified” conver-
gence theorem highlights and leaved unanswered the compositional question
as to which subgroups of agents in a fixed finite economy are actually assigned
to their initial endowment in the modified Walrasian assignment.

Remark 7: In light of the Mas-Colell’s Equivalence Theorem for
a continuum economy, the set of near-modified Walrasian allocations needs
to be checked to be weakly convergent to the set of Walrasian allocations.

• “Nearness” due to the convexification will be eliminated in the limit.
Intuitively, this should follow follow in the limit from the Lyapunov
Theorem which replaces the Shapley-Folkman Theorem in our
Existence Lemma.
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• “Modified”: Construct the sequence of finite economies {En} in an
obvious manner by identifying our E as its n-th element. Denote by
Wmod(En) the set of modified Walrasian allocations in En. It is yet to

be checked if
{
a ∈ An| f̃n(a) = en(a), f̃n ∈ Wmod(En)

}
is weakly conver-

gent to a measure 0 subset of A, the limit of An with a slight notational
abuse.

Remark 8: Presence of a group of “leaders” à la Aumann-Davis-Maschler
BAM(En) (Aumann and Maschler (1964), and in particular Davis and

Maschler (1967 [1963]), or Geanakoplos (1978) BG (En) =
∪

δ∈[0,1]

Bδ (En)

stipulating a fixed proportion δ of any objection, for any δ ∈ [0, 1], being
leaders who refrain from proposing any counterobjection to the objection in
question: Compare our “Modified” Convergence Theorem with Con-
vergence Theorems for BAM and BG due to Anderson (1998, Theo-
rems 3.4 and 3.7), as summarized in Table 1 in the preceding 5.2.1.

1. Will the stiplulated presence of leaders ensure∣∣∣ {a ∈ An| f̃n(a) = en(a), f̃n ∈ Wmod (En)
} ∣∣∣/|An| → 0 ?

In other words, does the presumption of leaders ensure the Mas-Colell
bargaining set allocation BM(En) to be realized as a result of almost
everyone pursuing actively to attain her demand in a market so that
those exceptional ones not actively participating in a market{

a ∈ An| f̃n(a) = en(a), f̃n ∈ Wmod (En)
}

typically constitute a “finite” subset throughout, and consequently re-
main to be negligible “in the limit” ?

2. Although the targets of convergence are different, a careful compari-
son needs be made between the convergence speeds, O(

√
n) we found

for the Mas-Colell Bargaining Set to the modified Walrasian assign-
ments, and O(n) due to Anderson (1998, Proposition 3.10) for the
Geanakoplos Bargaining Set to The Walrasian allocations.

Remark 9: It remains as our conjecture that nonconvergence of the Zhou
Bargaining Set BZ(En) due to Anderson, Trockel and Zhou (1997) may
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be salvaged as yet another “modified” convergence to an accordingly enlarged
set replacing the set of Walrasian allocations.

Remark 10: It is a straightforward generalization to incorporate the
nonconvex commodity space in our elementary convergence theorem, and
establish a finite analogue of Yamazaki’s Equivalence Theorem (1993)
by weakening both the Mas-Colell Bargaining Set and modified-Walrasian
allocations, as prescribed in Yamazaki (1995). Such an extension was car-
ried out in the present author’s presentation (Nomura (1995)) under the
generality with infinitely many indivisible commodities, where the proof of
the Existence Lemma was adapted from Nomura (1993a).

5.3 On the Strengths of the Hyperfinite Approaches

5.3.1 Asymptotic Interpretations

Step 1 : Construct a purely competitive sequence of finite economies
G = {En|n ∈ N}, and idealize the limit of G by the hyperfinite economy.

Step 2 : Prove the desired property for the limit hyperfinite economy Eω.

Step 3 : Deduce the desired asymptotic result from the limit result proven
in Step 2 for Eω.

According to the characterization given in Brown and Khan (1980),
G = {En|n ∈ N} is said to be purely competitive if

(i) |An| → ∞ as n → ∞,

(ii) lim
n→∞

1

|An|
∑
a∈An

e(a) exists,

(iii) En ⊂ An and lim
n→∞

|En|
|An|

= 0 ⇒ lim
n→∞

1

|An|
∑
a∈En

e(a) = 0,

(iv) For all δ > 0, there exists a compact K ⊂ P in the topology of closed
convergence, and n̄ ∈ N such that for all n ∈ N, n ≥ n̄ implies
|{an ∈ An| ≻a∈ K}|

|An|
≥ 1− δ
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The corresponding hyperfinite economy Eω idealizing the limit of G is
constructed by transfer from the constituent En, n finite, and will be endowed
with an internal infinitesimal measure structure. That is, (A, I(A), λ) is an
internal infinitesimal measure space of agents, where A with |A| = ω ∈
∗N − N is endowed with an internal subsets algebra I(A), and an internal

counting measure λ =
|B|
|A|

for all B ∈ I(A), which is easily checked to be an

internal finitely additive infinitesimal measure.
Consider (A, σ(I(A)), L(λ)) the Loeb measure space of (A, I(A), λ), i.e.,

σ(I(A)) is the smallest σ-algebra containing I(A), and L(A) is the unique
extension of st(λ) to σ(I(A)). By Proposition 8 (Rashid (1979, Lemma
1)) in the subsequent 5.3.3, ν is a countably additive non-atomic measure.

A standard measurable economy E : (A,A, ν) → P × X will be con-
structed as st(Eω), the standard part map of Eω.

The followings are immediate consequences of the Loeb measure construc-
tion.

Lemma 3 (Nomura (1984, Lemma 13)): E : (A,A, ν) → P × X,
constructed as st(Eω), is A-measurable.

Lemma 4 (Nomura (1984, Lemma 14)): P is compact in the topology
of closed convergence.

Lemma 5 (Nomura (1984, Lemma 15)): e(a) is ν-integrable.

Depending on the way how Step 2 is carried out, there are several types
of hyperfinite limit theorems with different convincing power:

• Successful Vindication of the Strength of the Hyperreal Ap-
proach over the Continuum Approach: Asymptotic interpreta-
tions of hyperfinite results proven ab initio, or “from the scratch” in
Step 2 serve this purpose.
The hyperfinite equilibrium existence theorem with the commodity

space ∗R∞ (Theorem 2 (Nomura (1981), Also quoted as Theorem
2 in Section 2 of the present article) is the case in point.
This hyperfinite limit result is proven “from the scratch” in two steps:

First, prove the equilibrium existence with ∗Rν , ν ∈ ∗N − N, the ν-
truncation of ∗R∞ as the commodity space (Theorem 3 (Nomura
(1981), quoted as Theorem 1 in Section 2), by transfer of the equi-
librium existence result for a comparable finite economy with a finite
number of commodities, say Rk, k ∈ N. Then, establish the extensi-
bility of the result through the transition from the partial ∗Rν to the
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full fledged ∗R∞ as the commodity space, by checking the addition of
the “tail” beyond (ν + 1)st coordinate is innocuous from the general
equilibrium point of view.
Note well that the new results, thus established for the limit hyperfi-

nite economy, are more general in their own right than any predecessors
by means of continuum approaches.

TABLE 2
Hyperfinite Limit Theorems Suggestive of Asymptotic and

Elementary Theorems

Hyperfinite Hyperfinite Asymptotic Elementary
Limit Theorem Limit Theorem Theorem Theorem

with ∗Rν , with ∗R∞ with R∞ with R∞
ν ∈ ∗N−N

Theorem 3 Theorem 2 Theorem 1 Theorem 1
Equilibrium (Nomura (1981)), (Nomura (1981)), (Nomura (1981)), (Nomura (1993a)),

Existence Also Theorem 1 Also Theorem 2 Also Theorem 3 Also Theorem 4

in Section 2) in Section 2) in Section 2) in Section 2)

Background Background Background Theorem 1
Core Exercise for Exercise for Exercise for (Nomura (1992c)),

Equivalence Theorem 1 Theorem 1 Theorem 1 Also Theorem 6

(Nomura (1992c)) (Nomura (1992c)) (Nomura (1992c)) in Section 3)

• Of Lesser Impact: Asymptotic interpretations of hyperfinite results
that are derived in Step 2 from the already known comparable re-
sults for the continuum counterpart, instead of being proven “from the
scratch.”
Let X ⊂ Rℓ

+ be the nonconvex commodity space, and the price p is
chosen from

{
p ∈ Rℓ

+| ∥p∥1 = 1
}
.

It is well recognized that with an introduction of the nonconvexity
of the commodity space, the Dispersion Hypothesis (D.H.) of sorts will
suffice to restore the upper hemicontinuity of the individual demands,
and consequently of the mean (excess) demand by reducing those mak-
ing their choices at the “corner points” negligible economy-wide. (D.H.)
may well take the following three specific guises in the respective econ-
omy:
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– (D.H.) for the hyperfinite limit economy Eω : (a, I(A), λ) → ∗P ×
∗X: For all p ∈ ∗∆, and for all α ∈ ∗R+, λ ({a ∈ A| p.e(a) = α}) ≃ 0.

– (D.H.) for the purely competitive sequence of finite economies
G = {En}: For all En ∈ G, for all p ∈ ∆, and for all α ∈ R+,
there exists an M ∈ N such that | {a ∈ An| p.e(a) = α} | ≤ M .

– (D.H.) for the measurable limit economy E : (a,A, ν) → P × X:
For all p ∈ ∆, and for all α ∈ R+, µpe(α) = ν ({a ∈ A| p.e(a) = α}) =
0.

TABLE 3

Hyperfinite Limit Theorems Derived from the Known

Measurable Counterparts

Measurable Hyperfinite Asymptotic
Limit Theorem Limit Theorem Theorem

for E for Eω for G = {En}
Equilibrium Theorem Theorem 11 Theorem 1
Existence (Yamazaki (1978a)) (Nomura (1984b)) (Nomura (1984b))

Core Theorem 1 Theorem 12 Theorem 2
Equivalence (Yamazaki (1978b)) (Nomura (1984b)) (Nomura (1984b))

Hyperfinite theorems are derived from the comparable measurable
theorems

Nonstandard Analysis might well be evaluated as providing no more
than an appropriate and straightforward apparatus for asymptotic in-
terpretations when comparable limit results are already available for
measurable economies, when compared with the alternative measure-
theoretic approach pursued in Hildenbrand, Schmeidler and Za-
mir (1973).

• Somewhat Successful: In 5.1, I demonstrated that the price char-
acterization Vp(E) in place of the original V(E) helped to eliminate the
convexity requirement on preferences, and thus generalized Aumann’s
Value Equivalence. Here, we shall sketch yet another generalization of
admitting the nonconvexity of the commodity space.
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We start by recalling the expenditure function M(⪰a, p, x) intro-
duced in 5.1. As noted in 5.1, M(⪰a, p, x) = min {p.x′| x′ ⪰a x} serves
as a money metric representing ⪰a. At a half way point in 5.1 in an
attempt to get rid of convexity assumptions, we noted that a resort to
the expenditure function enabled one to generalize Aumann‘s results
to nonconvex preferences. Here, we go a step further, and investigate
consequences of dropping the convexity of the commodity space as well.

With an introduction of the nonconvex commodity space, by now
familiar (D.H.) needs be adapted, and is expressed in terms of the
expenditure function distribution.

– (D.H.) for the hyperfinite limit economy Eω : (a, I(A), λ) → ∗P ×
∗X: For all (p, x) ∈ ∗∆× con ∗X, and for all α ∈ ∗R+,
λ ({a ∈ A|M(⪰a, p, x) = α}) ≃ 0.

– (D.H.) for the purely competitive sequence of finite economies G =
{En}: For all En ∈ G, for all (p, x) ∈ ∆ × conX, and for all α ∈
R+, there exists an M ∈ N such that | {a ∈ An|M(⪰a, p, x) = α} | ≤
M .

– (D.H.) for the measurable limit economy E : (a,A, ν) → P ×
X: For all (p, x) ∈ ∆ × conX, and for all α ∈ R+, µM(α) =
ν ({a ∈ A|M(⪰a, p, x) = α}) = 0.

TABLE 4

Hyperfinite Limit Theorems Derived from the Newly

Established Measurable Counterparts

Measurable Measurable Hyperfinite Asymptotic
Limit Theorem Limit Theorem Limit Theorem Theorem
for V(E) and for Vp(E) and for Vp(Eω) and for Vp(En) and
convex X nonconvex X nonconvex X nonconvex X

Main Theorem Theorem 1 Theorem 5.1 Theorem 2
Value (Aumann (1964)), (Nomura (Nomura (Nomura

Existence and Theorem 1 (1992b)) (1992b)) (1992b))

(Aumann (1975))

Value Theorem 1 Theorem 3 Theorem 5.2 Immediate.
Equivalence (Aumann (Nomura (Nomura (Deduce from

(1975)) (1992b)) (1992b)) Theorem 5.2.)
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“Somewhat successful” in the following specific senses

– With the hyperfinite limit theorem as the ultimate goal, and sub-
sequent asymptotic interpretation thereof in mind, we have man-
aged to prove a standard measurable limit theorem by ourselves.

– The price characterization Vp(E) is reminiscent of utility assign-
ment, andNegishi’s taking advantage thereof in the seminal work
(1969) with infinitely many commodities. It should not be diffi-
cult to generalize the present analysis to admit infinitely many
commodities.

5.3.2 Elementary Theorems

As we demonstrated in Section 2, it is potentially always possible to prove
standard limit theorems corresponding to any hyperfinite limit theorems if
one manages to develop standard proofs of the steps in the original non-
standard proofs that involve external entities. “Countability” is one such
external entity, which is central in the “continuum” idealization of perfectly
competitive markets with infinitely many agents by way of “countably” addi-
tive measure spaces, and the specification, by way of the space of sequences,
of the space of infinitely many commodities contingent on “countably” many
characteristics.

We are not as successful as we like in an attempt to maneuver elementary
proofs by mimicking the original hyperfinite proofs and avoiding the external
notions therein. The following Table 5 shows the state of the art of the
elementary general equilibrium analysis, and assembles what few successful
results we have accomplished. .
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TABLE 5
Elementary Theorems with Nonconvex Preferences and/or

Commodity Space

Elementary Elementary Elementary Elementary
(Nonconvex P (Nonconvex P (Nonconvex P (Nonconvex P
and Convex and Nonconvex and Convex and Nonconvex
X ⊂ Rk

+) X ⊂ Rk
+) X ⊂ R+

∞) X ⊂ R+
∞)

Finite Dimensional
Special Case of
Theorem 1

(Nomura (1993a))

Equilibrium Theorem Hyperfinite Special Case of Theorem 1
Existence (Anderson, Khan (Nonconvex ∗P Theorem 1 (Nomura (1993a),

and Rashid (1982)) and Nonconvex (Nomura (1993a)) Also Theorem 4
∗X ⊂ ∗Rk

+) in Section 2)

Theorem 6
(Khan and

Rashid (1982))

Finite Dimensional Special Case of Theorem 1
Core Theorem 1 Special Case of Theorem 1 (Nomura (1992c),

Equivalence (Anderson (1978)) Theorem 1 (Nomura (1992c)) Also Theorem 4

(Nomura (1992c)) in Section 3)

5.3.3 Loeb Measure

It used to be the case that, due to the external nature in the hyperfinite con-
text of the continuum as idealized by countably additive measure space of
agents, the hyperfinite results did not admit directly comparable implications
for continuum economies. The breakthrough was provided by the construc-
tion of measure spaces due to Loeb (1975), known as Loeb measures.

In what follows, we shall summarize only those properties that we have
actually taken advantage of in the course of our past applications (see No-
mura (1992)). For more complete account, we refer to Anderson (1976),
(1982) and (1991), and Loeb (1979). In particular, Anderson (1982) shoed
that Loeb’s construction enables one to obtain a large class of measure spaces
from the hyperfinite models, including Radon spaces, and also extended ap-
plications to Baire spaces in the case of non-Radon spaces.

Loeb’s construction starts with (X, T , ν), an internal measure space in
a denumerably comprehensive enlargement of a superstructure containing
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R, where X is an internal set in this enlargement, T an internal algebra of
subsets of X, and ν : T → ∗R+ an internal finitely additive measure.

Loeb shows that the setX, considered now as a standard set, is a standard
measure space when equipped with the smallest σ-algebra σ(T ) containing T ,
and with the standard countably additive measures L(ν) on σ(T ) obtained
as the unique extension of standard part of ν to σ(T ) by the Caratheodory
procedure.

Proposition 7 (Loeb (1975, Thorem 1)): Let (X, T , ν) be an internal
measure space in a denumerably comprehensive enlargement. Then, there is
a unique countably additive standard measure L(ν) on σ(T ), the smallest
σ-algebra in X containing T , such that for each internal set A ⊆ X, L(ν) =
st(ν(A)).

The following observation is due to Rashid (1979, Lemma 1).

Proposition 8 (Rashid (1979, Lemma 1)): If ν is an infinitesimal
measure, i.e., ν(x) ≃ 0 for all x ∈ X, then L(ν) is non-atomic.

Loeb further shows that internal, T -measurable functions are converted
to extended real-valued σ(T -measurable function on X.

Proposition 9 (Loeb (1975, Thorem 2)): Let f : X → ∗R be an
internal, T -measurable function. Then, g : X → R ∪ {+∞,−∞} given by
g(x) = st(f(x)) is σ(T )-measurable.

f : X → ∗R is said to be S-integrable if

(i) f is T -measurable,

(ii) st

(∑
x∈X

|f(x)|ν(x)

)
< +∞,

(iii) A ⊆ X, ν(A) ≃ 0 ⇒
∑
x∈A

|f(x)|ν(x) ≃ 0.

Anderson (1976, Theorem 6) generalized to S−integrable functions
Loeb’s integrability result (1975, Theorem 3) for finite functions. Note
that if f is finite, then T -measurability implies S-integrability.

Proposition 10 (Anderson (1975, Theorem 6)): Let f : X → ∗R be
S-integrable, and let g(x) = st(f). Then, g is L(ν)-integrable and∫

A

g(x)dL(ν)(x) = st

(∑
A

f(x)ν(x)

)
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for each A ⊆ X.

The following result on the recoverability of L(ν)-integrable functions as
S-integrable functions on (X, T , ν) is due to Anderson (1976, Theorem
7), which again generalizes Loeb’s comparable result for bounded σ(T )-
measurable functions (1975, Proposition 2).

Proposition 11 (Anderson (1975, Theorem 7)): Suppose g : X → R
is L(ν)-measurable. Then, there is an S-integrable f : X → ∗R such that
st (f(x)) = g(x) L(ν)-almost everywhere.

5.3.4 “Market Thickness,” or the Relative Size Requirement

• The following quotation from Mas-Colell (1975, p.265) best sum-
marizes the judicious concern that the infinite dimensional commodity
spaces open up a possibility of infinite variations in agents’ character-
istics, and the consequent need to resort to a version of the remedial
relative size requirement, or the market thickness requirement accord-
ing to Gretsky and Ostroy (1985) coinage, in order to secure the
negligibility of agents in each of infinitely many markets:

. . . , although infinite-dimensional, the ‘size’ of the commod-
ity space is sufficiently small relative to the size of the econ-
omy for the equality of core and equilibria to obtain [this is a
well-known heuristic requirement for Aumann’s theorem to
be generalizable; . . . ]; . . . .

– With the infinite-dimensional commodity space, it is market thick-
ness, not nonatomicity of the space of agents that generates such
economic consequences as existence and core-equivalence of com-
petitive equilibria. Incidentally, an economy with a nonatomic
space of agents and finitely many commodities is always thick.

– With a Banach lattice as the commodity space and a nonatomic
space of agents, Gretsky and Ostroy (1985) show that if an
allocation vector measure is representable as an integral with re-
spect to the nonatomic measure on the space of agents, i.e., has
Radon-Nikodym derivative, then markets are thick.

• Ostroy (1984, 143-144) notes:
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There is a tension between these two infinities [the number of
commodities and that of agents]. It is known that the com-
petitive properties of Walrasian equilibrium in models with
a continuum of agents requires some restrictions on the com-
modity space so as to preclude ‘truly large-square’ models
where ‘the number of commodities is as large as the number
of agents’. In these truly large-square models, the potential
competition from large numbers of agents is offset by the vari-
ety of commodities in the sense that infinitesimal agents may
trade commodities for which there are no good substitutes

Despite many similarities between measure spaces and hyperfinite sets,
idealizing the limit of the sequence of spaces of the finitely many agents (in-
deed, the Loeb measure construction converts a hyperfinite set to a measure
space), Anderson (1991, p.2148) calls attention to some explicated assump-
tions in the hyperfinite context, hidden in the measure theoretic formulation:

However, there are certain phenomena that can occur in hyperfi-
nite economies which are ruled out by the measure-theoretic for-
mulation. . . . In the hyperfinite context, certain conditions inher-
ent in the measure-theoretic formulation can be seen to be strong
endogenous assumptions. Using hyperfinite exchange economies,
we can state exogenous assumptions which imply the endoge-
nous assumptions inherent in the measure-theoretic formulation,
as well as explore the behavior of economies in which the endoge-
nous assumptions fail.

As such, the “Market Thickness” condition becomes explicit in the hy-
perfinite idealization.

(γ.1) Hyperfinite Relative Size Requirement (Nomura (1981, The-
orem 3, Assumption (iv); Also reproduced in the present article as
Theorem 1, Assumption (c))7): Let ν ∈ ∗N−N be the number of
commodities and ω ∈ ∗N−N the number of agents, where ∗N is the
nonstandard extension of N. Then,

ν√
ω

≃ 0.

7Lewis (1977, Essay I, Theorem 1) and Brown and Lewis (1981, Theorem II.1,

Assumption (iv)) postulate a comparable assumption which claims
ν

ω
≃ 0 instead.
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In retrospect, relative size requirements, in several guises, might well be
understood to have served, in not necessarily mutually exclusive ways, to
secure for subsets of infinite dimensional commodity spaces the following
three desired properties in equilibrium existence analysis: (α) compactness,
in the topology with respect to which the preferences are continuous, (β)
non-empty interior, and (γ) average convexity. Some detailed accounts are
in order:

(α) Compactness: Except for the straightforward compactness of
the cartesian product of any nonempty collection of compact spaces
in the product topology, as guaranteed by Tychonoff’s Theorem (see
e.g. Dunford and Schwarts (1958, Section I.8.1)), the difficulty (α)
stems from the fact that, unlike the finite dimensional case, closed and
bounded subsets of infinite dimensional spaces need not be compact.

(α.1.1) Impatience, or Myopic Preferences (Brown and Lewis
(1981), and Raut (1986)): Any continuous preferences on ℓ∞
(Brown and Lewis (1981)) or on L∞ (Raut (1986)), in the lo-
cally convex Hausdorff topologies coarser than the Mackey topol-
ogy, exhibit strong myopia in the sense that finite differences in
sufficiently distant tails make no change in choices made in the
light of continuous preferences in such topologies.

(α.1.2) Topologically Separable Commodity Space (Gabsewicz
(1968 and 1991)): The commodity space is restricted to C(S), the
set of bounded continuous functions on a compact metric space S,
that is topologically separable, which enables one to restrict the
size of the commodity space.

(α.1.3) Measurability of Agents’ Characteristics (Bewley (1973,
p.386)): The preference relation of an agent is Lusin measurable
in the Hausdorff uniformity derived from the uniformity of the
Mackey topology on the commodity space L∞; his initial endow-
ment is measurable in the sup norm; and the production set is
measurable in pseudo-metric, thus reducing agents’ diversity.

(α.1.3’) Strong Measurability of Agents’ Characteristics (Mertens
(1970 and 1991)): The commodity space is chosen to be L∞ on
(S,Σ, σ), a totally σ-finite separable positive measure space, in
addition to the measurability of agents’ preferences and initial
endowment.
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(α.2) Compactness of the Space of Commodity Characteristics (Mas-
Colell (1975, (I))): The space of commodity characteristics K
is chosen to be a compact metric space, and the commodity space
is restricted to C(K), the set of bounded continuous functions on
K. The commodity space is further restricted to a discrete sub-
space with one perfectly divisible commodity, where “the margin
of choice is in the commodity chosen rather than in the quantity
purchased of a given commodity (Jones (1984, p.514)).” When
combined with the compactness of agents’ characteristics (Mas-
Colell (1975, (VIII))), the compactness requirement of K serves
to restrict the size of the commodity space sufficiently small rela-
tive the the size of the economy.

(α.3) “Market Thickness” as a Dimensional Restriction on the
Final Allocation (Gretsky and Ostroy (1985)): An exchange
economy is said to exhibit thick markets if the final allocation
mapping is Dunford-Pettis. If the commodity space, the range of
the allocation mapping, is endowed with the norm topology, and
if it is Bochner integrable, which is tne appropriate choice of the
representability for the norm topology, then the allocation map-
ping is Dunford-Pettis. The market economy is thick if and only
if the allocation mappings have range with compact and convex
closures (Gretsky and Ostroy (1985, Section 3.1, Theorem
and Remark 1)).

(α.4) “Physical Thickness” as a Dimensional Restriction on the
Endowment of the Agents (Ostroy and Zame (1994) and An-
derson (1990)): Markets are said to be physically thick if the
endowment map e : A → M+(T ) satisfies: there is a constant K
such that e(a) ≤ Km for almost every a ∈ A, where m ∈ M+(T )
is a reference bundle such that m is nonatomic and supm = T
(Ostroy and Zame (1994, Definition)). If e is weak* measur-
able, and e(a) ≤ Km for all a ∈ A, then e is norm measurable and
hence Bochner integrable (Ostroy and Zame (1994, Footnote
4)). Therefore, e is almost a sure limit of functions taking on only
a finite number of values.
Together with an assumption on the bounded rates of substitu-

tion (Ostroy and Zame (1994, (B))):

there is a constant M such that if X,Y, Z ∈ M+(T ),
and if Z − X + Y ≥ 0 and M ∥ X ∥≤∥ Y ∥, then
Z −X + Y ≻a Z for all a ∈ A,
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that is much weaker than the economic thickness condition (β.1),
the physical thickness condition serves to restricting the range of
final allocations dimensionally to an order interval in the commod-
ity space (Ostroy and Zame (1994, Theorem 4)):
Anderson (1990, Section 4) is well aware of the necessity of

some kind of relative size requirement, and goes on to propose for
economies with a large but finite number of agent the following
analogue of Ostroy and Zame’s physical thickness condition:

The dimension of the linear span of the set of individual
endowments is much smaller than the number of agents.

(β) Non-empty Interior: Uniformly proper preferences ensure non-
empty interior of the supported set, and consequently the existence of
supporting prices.
Initially little attention was paid to (β), because Bewley’s (1972)

choice of the commodity spaces, the positive cone of ℓ+ or L+, has non-
empty interior. Indeed, as Mas-Colell (1986, p.1043) points out,
for strictly positive points of L∞ with the Mackey topology, the uni-
form properness is implied by monotonicity, convexity and continuity
of preferences. As noted in the preceeding discussion of (α.2), despite
the empty interior of the positive cone of C(K), the space if continu-
ous functions on K, Mas-Colell (1975) managed to get around the
empty interior problem by restricting to the discrete subset of C(K).

(β.1) Uniform Substitutability (Jones (1983) and Jones (1984))
or Economic Thickness (Ostroy and Zame (1994), and itsAsymp-
totic Version (Anderson (1991, Section 3)):
With M(T ), the finite nonnegative signed measures on the

space of commodity characteristics T , equipped with the distance
d, as the commodity space, Jones (1983, (UHS)) and Jones
(1984, Assumptions HS1-HS3) restrict the preferences to those ex-
hibiting the Uniform Substitutability Property. Markets are said
to be “economically thick” if the preferences therein satisfy the
Uniform Substitutability Property:

For all γ > 1, there exists ρ > 0 such that for all α > 0,
for all m ∈ M(T ), and for all s, t ∈ T with d(s, t) < ρ,

m+ αγδt ≻ m+ αδs,

where δt is the Dirac measure at t, i.e., δt(S) = 1 if t ∈
S ⊂ T and 0 otherwise.
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That is, for every given favorable terms γ > 1, there exists an
upper bound ρ on the similarity of characteristics so that, for
trades involving commodities with the specified similar charac-
teristics, any trade in which the terms are favorable is preferred.
Intuitively, sufficiently close characteristics, s, t ∈ T are good sub-
stitutes at the margin, in the sense that their marginal rate of
substitution is uniformly close to unity. The preference relation
which has a utility representation in such a way that marginal
utility depends continuously on the commodity characteristics, is
said to be proper (Jones (1984, Proposition 1)). Jones (1984,
p.514) goes on to claim: “ . . . The simultaneous choice over both
of these margins can be handled as long as the quantity margin is
more important than the characteristics one.” Thus, the sufficient
substitutability between the consumption characteristics ensures
the validity of the approximation of the infinite dimensional com-
modity space by large but finite dimensional commodity spaces.
Anderson (1990, Section 3) gives an Asymptotic Charac-

terization of Uniform Substitutability on M([0, 1])+, the space of
countably additive finite nonnegative Borel measures on [0, 1]:

Partition [0, 1] into k intervals[
0,

1

k

)
,

[
1

k
,
2

k

)
, . . . ,

[
1− 1

k
, 1

]
,

and

Identify a finite set{
ti

∣∣∣ ti ∈ [ i− 1

k
,
i

k

)
(i = 1, 2, . . . , k − 1); tk ∈

[
1− 1

k
, 1

]}
with the property that any t ∈ [0, 1] is nearly a perfect sub-
stitute for some ti.

(β.2) Uniformly Proper Preferences (Mas-Colell (1986)): The
commodity space L+ is chosen to be the positive cone of a locally
convex, Hausdorff ordered vector space L. In the vein of impos-
ing bounds on the marginal rate of substitution, Mas-Colell
(1986, Definition, p.1043) restricts the preference relation ⪰ to
a uniformly proper class:

At every x ∈ L+, there exist ν ≥ 0 and an open neigh-
borhood of the origin V , both of which can be chosen
independently of x, such that

[z ∈ L] ∧ [x− αν + z ⪰ x] ⇒ [z ∈ ϵV ].
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In words, the marginal rates of substitution for the given com-
modity bundle ν are assumed to be bounded in the sense that, if
is is impossible to compensate for a loss of αν with z, then z is
too small relative to αν.
Richard and Zame (1989, Theorems 2 and 4) establish the

essential equivalence of (β.2) to the extensibility of ⪰ on L+ to
that on convex subset of L containing L+ with nonempty interior.

(β.3) Existence of Extremely Desirable Commodities (Yannelis
and Zame (1986)) as a non-transitive variant of (β.2) : For x ∈ L+

and ν ∈ L+, define

Γν(x) =

{
µ ∈ R+

∣∣∣ x− αν + z ≻ x; −1 ≤ α < 0;
x− αν + z ∈ L+; ∥x∥ < −αµ

}
.

There exists an extremely desirable commodity bundle ν in the
sense that

inf {µ(ν, x)|x ∈ L+} > 0,

where µ(ν, x) = max {µ|µ ∈ Γν(x)} measures the marginal rate of
substitution of ν for x. That is, ν is said to be extremely desirable
if it is possible to compensate the loss of z, to the extent of ∥z∥,
with the increment of −αν so long as ∥z∥ is sufficiently small
relative to α.
It is not difficult to see that, for transitive, complete, convex and

non-interdependent preferences, (β.2) and (β.3) are equivalent.

(γ) Average Convexity: Not surprisingly, (γ) has received yet less
attention, since the existence and/or core-equivalence proofs proceed
by securing the extesibility of the comparable results with possibly
approximations for the economies with finitely truncated commodity
spaces. As far as the finite truncations are concerned, the property (γ)
holds automatically for each constituent truncated economy without
any further assumptions.
However, one should be aware that the convexity of the preferences

and that of the commodity space need to be retained in order to se-
cure the desired extensibility, either by taking the limit of finite di-
mensional economies, or by converting infinite dimensional allocations
to the corresponding finite dimensional utility assignments to finitely
many agents (except possibly forYannelis and Zame (1986) that does
not assume the convexity of preferences, andMas-Colell (1975) with
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the nonconvex commodity space due to commodity indivisibility). Two
notable exceptions to such state of the art are (γ.1) and (γ.2).

(γ.1): Already stated in a “box” at the onset of the present dis-
cussion of the “Market Thickness.”

(γ.2) Finitely Spannable Commodity Space (Nomura (1993,
Theorem 1, Assumption 1; Also reproduced in the present
article as Theorem 4, Assumption 1): For all a ∈ A, da(p) has
a finite family of convex subsets

{
dja(p)| j = 1, . . . , κa

}
such

that

da(p) =
κa∪
j=1

dja(p).

In spirit, (γ.2) has the closest bearings on the characterization
(α.3) of the physical thickness due to Gretsky and Ostroy
(1985), in that both essentially restrict the dimensions of the final
allocations.

Mathematically, it is worth pointing out that an application of ei-
ther of two major Average Convexity Theorems is problematic in the
presence of infinitely many commodities. Lyapunov Theorem, appli-
cable to economies with a measure space of agents, fails in every infinite
dimensional Banach space (see e.g. Diestel and Uhl (1977, Section
IX.1)). Alternatively, the degree of approximation explicated by an ap-
plication of Shapley-Folkman Theorem, due originally to Starr
(1969, Appendix), for economies with a finite number of agents, de-
pends crucially on the finite dimensionality of the commodity space,
and therefore inapplicable.

5.3.5 More on Finite Spannability

Needs for (γ.2) Finite Spannability in 5.3.4 were never recognized in the
finite dimensional context where (γ.2) always follows by Caratheodory’s
Theorem (see e.g. Hildenbrand (1974, p.37)), except possibly forBroom
(1972, Assumption 2.6), that required finite spannability by non-corner points.
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A Measure-Theoretic Analogue of Finite Spannability: In order
to argue convincingly in support of somewhat artificial assumption (γ.2)
Finite Spannability, we draw our attention to measure-theoretic analogues
of average convexity theorems, known as the Lyapunov Theorems, and in
particular the following extension to the infinite dimensional spaces due to
Akemann and Anderson (1991), where needs for similar representability
conditions were recognized.

The measure-theoretic Lyapunov’s Theorem (see e.g., Hildenbrand
(1974, p.45)), of which Shapley-Folkman Theorem constitutes the finite
analogue, establishes that the range of a finite dimensional vector-valued
measure is compact and convex. When restated in the language of operator
algebras, Lyapunov’s Theorem reads as:

Proposition 12 (Lyapunov Theorem for Nonatomic von Neumann
Algebras (Akemann and Anderson (1991, Theorem 2.5)): If Ψ is a
weak∗ continuous linear map from an abelian, nonatomic von Neumann al-
gebra M to a finite dimensional space, then Ψ(P ) = Ψ((M+)1), where P
denotes the set of projections, i.e., extreme points, in M and (M+)∞ de-
notes the positive portion of the unit ball of M.

In hindsight, the proof of Proposition 12 hinges not surprisingly on
the dimension of the domain being strictly greater than that of range, the
latter of which is taken to be finite.

In order to generalize Proposition 12 to Ψ with the infinite dimen-
sional range, and to comprehend the restrictive meanings of the additional
assumptions therein, we need to assemble some definitions from operator
algebras.

A continuous linear functional f on a von Neumann algebra M is
singular if and only if for each nonzero projection p in M, there is a
nonzero projection q ≤ p such that f(q) = 0. Also, a bounded linear
map Ψ from a von Neumann algebraM into a normed linear space X
is said to be singular if Ψ∗(X ∗) consists entirely of singular functional
on M (Akemann and Anderson (1991, p.50)).

The following definitions weaken the notion of separability: A von
Neumann algebra M is essentially countably decomposable if, given a
singular state f on M, and a family {pα|α ∈ κ} of orthogonal projec-
tions in the kernel of f , Ker(f) = {f(p) = 0}, i.e., f(p) = 0 for each

α, with
∑
a∈κ

pα = 1 (which is always possible by Zorn’s Lemma (see

e.g. Dunford and Schwartz (1968, Theorem I.2.7)), there is a
partition of κ into a countable family of disjoint subsets {κn} such that
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if we write pn =
∑
α∈κn

pα, then each pn lies in Ker(f) (Akemann and

Anderson (1991, Definition 6.1)).

A von Neumann algebra M is κ-decomposable if every family of
orthogonal projections in M has cardinality less than κ, the smallest
cardinal with this property, and is said to be not too large if it is
κ-decomposable for some submeasurable cardinal κ (Akemann and
Anderson (1991, p.54)).

The following result due toAkemann andAnderson (1991, Propo-
sition 6.4) establishes that a von Neumann algebra M is essentially
countably decomposable if either of the following conditions holds:

(1) M is countably decomposable;

or

(2) M is not too large, and the continuum hypothesis holds true.

Let za, the supremum of all the minimal projections in M, be a cen-
tral projection in M (which does exist since the family of minimal pro-
jections in M is unitarily invariant (Akemann and Anderson (1991,
p.2)). Write the atomic algebra Ma = zaM and the finite part of Ma,
Mfin = zfinM, where zfin = sup{z ∈ Ma| z is a central partition and
zMa is finite dimensional}.

With these definitions in hand, we are now in the position of presenting an
infinite dimensional generalization of the preceding Proposition 12, which
may be reckoned as a continuum analogue of our Average Convexity
Theorem of Infinite Dimensional Ranges (Nomura (1993a), repro-
duced as Theorem 8 in Section 4) a la Shapley-Folkman Theorem.

Proposition 13 (Lyapunov Theorem for Singular Maps (Akemann
and Anderson (1991, Theorem 6.12)): If M is an essentially countably
decomposable von Neumann algebra such that the center of the finite part
of M is finite dimensional, if X is a normed linear space where the dual
space X ∗ is weak∗ separable, and if Ψ is a singular map of M into X , then
Ψ(P ) = Ψ((M+)∞), where P denotes the set of projections, i.e., extreme
points in M, and (M+)∞ denotes the positive portion of the unit ball of M.

To sum up, (γ.2) Finite Spannability is no more restrictive than postu-
lating the weak∗ separability of X ∗, together with the essentially countable
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decomposability of M, in the measure-theoretic counterpart. Both may well
be looked upon as the relative size requirement. Intuitively, in our Shapley-
Folkman-type Average Convexity Theorem in which the domains
are finite dimensional, the ranges need to be at least of finite structure.
By comparison, since the domain of a singular map Ψ is of “essentially”
inseparable nature, which is further restricted to the essentially countably
decomposable class, it may be hoped that an infinite dimensional extension
of Lyapunov Theorem, such as Proposition 13 is only possible by securing
some sort of separability for the range of singular maps, more specifically
the weak∗ separability of the dual of the domain. It is also by now apparent
that (i) of Corollary 4 in Section 4, for the finitely decomposable do-
main, each corresponding to a type of consumers, has close bearings on the
hypothesis in Proposition 2.

Approximate Asset Price Equilibria: Assumption (γ.2) has close
connections with spannability of incomplete financial markets by finitely
many marketed assets.

Let S be a separable metric space. s ∈ S is a state of the world. Let
(S,Σ, µ) be a probability space, with µ a finite measure on S , absolutely
continuous w.r.t. the Lebesgue measure on S. L2(µ) is a normed linear space
of real-valued measurable functions f defined on S, of which the L2-norm

∥f∥2 = (f.f)
1
2 =

(∫
S

f 2dµ

) 1
2

is finite. Then, L2 is a separable Hilbert space,

and emerges as a natural candidate for the commodity space of financial
markets where contingent claims are typically of finite means and variance.

By the Cauchy-Schwartz Inequality, the space of square-integrable con-
tingent claims is a Hilbert space. Thus,

X ⊂ L+
2 = {f ∈ L2| f ≥ 0}

denotes the space of contingent claims. L2 will be endowed with the L2-norm
topology T2.

Furthermore, when S is decomposed as S = {s1}∪Sd after appropriately
reindexing the states of the world, and when the real-valued measurable
function f defined on S takes the values, f(s1) ∈ R+ and f |Sd

∈ N ∪ {0},
define Xd as the subset of X consisting of such f ’s, i.e.,

Xd =
{
f ∈ L+

2 | f(s1) ∈ R+, f |Sd
∈ N ∪ {0}

}
⊂ X.

Then, Xd is the space of discrete square-integrable state-contingent claims,
all of which except one are transacted discretely in integer values.

52



Marketed Securities. M0 ⊂ X with carM0−ν ∈ N is the space ofmarketed
securities, i.e., claims to state-contingent consumption at the terminal date,
say T for which a market exists. These ν long-lived assets or securities allow
agents to consumption across dates and states. For x ∈ M0, x

i, the i-th
coordinate of x, denotes the amount of the i-th security that entitles the
bearer on date T to δi(s) units of the consumption at date T if the state is
s. Thus, in the presence of ν marketed securities, the security markets are
characterized by a dividend process δ, the valuation functional p0 on M0 and
the associated gain process G expressed as G(t) = p0(t) − p0(0) + δ(t), t ∈
[0, T ].

Consider options constructed solely of the marketed securities, and define
the subspace M ⊂ X by spanM0, the span of M0. The valuation functional
p is the price of the options in M , which extends p0 to M .

Information Revelation Process. Consider a filtration {Ft} towards the
σ-algebra Σ on S. Let P : Σ → [0, 1] be the equivalent class of subjective
probabilities held by agents. Given (S,Σ, P ), the filtration is the information
commonly held by agents at t ∈ [0, 1] such that Ft+1 is at least as fine as Ft,
F0 is trivial and FT = Σ8. At t, all agents know which cell of Ft contains
the true state, and thus, {Ft} specifies the order in which uncertain events
are revealed to be true or false over t ∈ [0, T ].

We may well limit the space of contingent commodities X to a single
physically identifiable consumption good, available at any date t ∈ [0, 1],
and consumption of which is adapted to Ft. Thus a generic element x ∈ X is
such that x(t) is a Ft-measurable function on S, the value of which is denoted
by x(t, s) in the state s.

Trading Strategy. Given the state space S endowed with the σ-algebra Σ
and the filtration {Ft}, define the trading strategy of agent a θ : S× [0, T ]×A
in terms of a portfolio of marketed securities. θ(s, t, a) is assumed to be Ft-
measurable, and satisfy p0θ(s, t, a) ∈ L2.

Given p0, the trading strategy θ(s, t, a) is converted to the following net
trades in state-contingent consumption:

x(θ, p0, a) = (−θ(0, a)p0(0),∆θ(t, a)p0(t),∆θ(T, a)p0(T ) + θ(T, a)δ)

Remark 11: The original Black and Scholes’ model (1973) assumes
that agents have endowments and consume only at date 0 and T , and restricts

8At t = 0, no information is available to agents about the state of the world, while at
t = T agents learn all information to conclude the true state of the world.
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the trading strategies to the self-financing class, i.e., ∆θ(t)p0(t) = 0 for all
t ∈ [0, T ].

Following Kreps (1982), we define by the number of subcells of F in
Ft+1 a measure of the amount of information that might be received by date
(t+ 1) if at date t the cell F is known to prevail, i.e.,

K(t, F ) = Card ({F ′ ∈ Ft+1|F ′ ⊆ F}) .

In the present context of incomplete financial markets, (γ.2) Finite Spannabil-
ity may well be expressed as:

Assumption 9 (Finite Spannability): There exists a large but finite num-
ber ν of marketed long-lived assets in M0, defined by

ν = max {K(t, F )| t < T, F ∈ Ft} .

Remark 12: Define M(a) ⊂ M by

M(a) = max {x ∈ X| (∃r(a) ∈ R) (∃θ(a))x− r(a) ∈ x(θ(a), p0)}

and p : M(a) → R such that p. (r(a) + x(θ(a), p0)) = r(a). Then, Kreps
(1982, Proposition 2) establishes that our Assumption 9 is a necessary
and sufficient condition for M(a) = X.

By a slight abuse of notation, Assumption 2 (Bounded Nonconvexity)
reads in the present context as:

Although we have not yet managed to delve into its behavioral interpre-
tations in terms of agents’ characteristics, the Bounded Nonconvexity
Assumption is so far stated as postulating sufficient risk aversion so that
the resulting demands are bounded.

Assumption 10 (Risk Aversion): There exists a scalar Λ > 0 such that
max {d(p, a)| a ∈ A} ≤ Λ.

Resorts to Assumption 9 (Finite Spannability) and Assumption 10 (Suf-
ficient Risk Aversion) establish an Elementary Equilibrium Existence
Theorem (Nomura (1986; Revised, 1991, Theorem 1), analogous to No-
mura (1993a, Theorem 1; Also reproduced asTheorem 4 in the preceding
Section 2).

With an introduction of discrete transactions, the Dispersion Hypothesis
(D.H.) now reads as:
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- (D.H.): Given a real-valued function α : Sd → R+, there exists a scalar
λ ∈ R+ such that∑

s∈Sd

|
{
a ∈ A|e1(a) = α(s)

}
| ≤ λ.n.

The above (D.H.) restores the desired upper hemicontinuity of the average
demand, which in turn enables us to generalize the Elementary Proof to the
nonconvex commodity space as well (Nomura (1982, Theorem 2), in a
comparable manner to (Nomura (1993a, Theorem 1); Also reproduced as
Theorem 5 in Section 2).

5.3.6 Mixed Markets with Atoms

Incorporations of mixed structures will be bidirectional, i.e., in the space of
agents and/or in the space of commodities.

• Spaces of Agents: Consisting of an ocean of small agents plus syn-
dicates.

– Measure-Theoretic Characterization of Mixed Space of Agents (Shi-
tovitz (1973)):

– Hyperfinite Characterization of Mixed Space of Agents (Khan
(1976, Section 5)): Let Aω with |Aω| = ω ∈ ∗N−N be divided
into two groups, A1 = {a1, a2, . . . , am} andA0 = {am+1, am+2, . . . , aω}
for some m ∈ N. Each agent carries his internal weight λ(a) ≳ 0

such that
∑
a∈Aω

λ(a) = 1.

Agents in A1 will be identified as “large” agents, while those in
A0 as “small agents” in the following sense (Khan (1976, Sec-
tion 5, A.6, p.287)):

(∀a ∈ A1)[λ(a) � 0],

and
(∀a ∈ A0)[λ(A) ≃ 0].
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– Finite Characterization of Mixed Space of Agents (Adapted from
Khan (1976, Section 2)): Let A with |A| = n ∈ N be divided
into two groups, A1 = {a1, a2, . . . , am} andA0 = {am+1, am+2, . . . , an}
for some m < n. Each agent carries his weight λ(a) ≥ 0 such that∑
a∈A

λ(a) = 1.

Agents in A1 will be identified as “large” agents, while those in
A0 as “small agents” in the following specific sense (Khan (1976,
Section 2, (4), p.279)):

(∃ξ ∈ R+)(∀a ∈ A1)[λ(a) ≥ ξ],

and

(∀δ ∈ R+)(∃ν ∈ N)[|T0| > ν =⇒ (∀a ∈ A0)λ(A) ≤ δ].

• Spaces of Commodity Characteristics: Consisting of closely sub-
stitutable characteristics plus distinct characteristics or possibly com-
plementary characteristics jointly consumed, that will warrant the emer-
gence of the market power exploited by a limited number of “large”
agents.

– Measure-Theoretic Characterization of the Commodity Space on
the Continuum of Commodity Characteristics (Mas-Colell (1975)):

The set of commodity characteristics [pure commodities ac-
cording toOstroy and Zame’s terminology (1994)] is a com-
pact metric space X; individual commodity bundles (i.c.b.’s)
[commodity bundles ] are positive (Borel) measures on X. Let
M(X) be the space of measures on X, and M+(X) the cone
of positive measures.

Let C(X) be the space of continuous real-valued functions
on X. Then, M(X) is the dual of C(X) with the sup norm
by Riesz Representation Theorem (see e.g. Royden
(1968, p.246)). The weak-star topology (w∗-topology) Tw∗ of
M(X) is the topology of pointwise convergence on continuous
functions, and is the weakest topology for which the mapping
(φ, α) → φ.α =

∫
φ(x)dα(x) is continuous for every φ ∈

C(X).
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Let a nonatomic µ ∈ M+(X), such that suppµ = X, i.e.,
the set of pure commodities is infinite, be a reference bundle
against which other commodity bundles may be measured.
The canonical case is X = [0, 1] and µ the Lebesgue measure.

– Mas-Colell (1975) further specializes X to X = Xd ∪{h} with
a prerequisite for (at least) one homogeneous good h, and the
restriction of α ∈ M+(X), denoted as α|Xd to be integer-valued.

– Characterizations of physical and market “thickness” due to Os-
troy and Zame (1994), discussed in some detail in the preceding
5.3.4, allow for less substitution between commodity bundles than
that assumed by Mas-Colell (1975), while retaining the possi-
bility that initial holdings can be widely varied.

A glance at the following summary tables reveals that the attempts at
“bidirectional” incorporations much needed for serious investigations of di-
verse “large-square economies” are sparse and far from complete. I indicated
the promising research agenda by meriting specific Conjectures.

Remark 13: At this outset, a close examination of the subsequent tables
leads us to establish the following results:

Theorem 15 (Limit Equilibrium Existence with the Mixed Hyperfinite
Space of Agents and the Commodity Space ∗X ⊆ ∗R+

∞): Let the internal
Eω : A → ∗Pmo × ∗X × ∗R+ be a hyperfinite exchange economy constructed
from Eν,ω in Theorem 1 of Section 2, plus the projection of Eω onto ∗R+,
proj∗R+

Eω = λ : A → ∗R+, with λ(a) ≳ 0 denoting the “weight” of a ∈ A

such that
∑
a∈A

λ(a) = 1..

Let A be divided into two groups, A1 = {a1, a2, . . . , am} and A0 =
{am+1, am+2, . . . , aω} for some fixed m ∈ N, independent of ω. Agents in
A1 will be identified as “large” agents, while those in A0 as “small” agents
in the following sense:

(∀a ∈ A1)[λ(a) � 0],

and
(∀a ∈ A0)[λ(A) ≃ 0].

Let p ∈
{
p ∈ ∗R+

∞

∣∣∣ ∥p∥∞ ≤ 1, pi ≥ 1√
ω

(∀i ∈ ∗N)

}
, g : A → ∗R∞ and

S ⊂ A be as described in Theorem 1. Denote by pc the nonstandard extension
of ◦p, the standard part of p, and write p = pc + p∞.
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Define f : A → ∗R∞ by

f i(a) =


gi(a) + ei(a)− I i(a)− pi∞(Ii(a)−ei(a)−gi(a)))

pic
for 1 ≤ i ≤ ν

p.(I(a)−e(a))

pν+1
c

for i = ν + 1

0 for i ≥ ν + 2.

Then,

(1) pc ∈ ∗ℓ+1 ,

(2) for all a ∈ S, f(a) ∈ d(pc, a),

and

(3)
∑
a∈A

f(a)λ(a) ≲ 0.

Construct from Eω a sequence of finite exchange economies {En} by the
following procedure:

(i) Choose a finite subset An ⊂ A so that |An| → ∞ as n → ∞;

(ii) Assign to each a ∈ A, ◦ ≻a,
◦e(a) and ◦λ(a), the standard parts of

≻a, e(a) and λ(a), respectively.

Theorem 16 (Asymptotic Interpretation of Theorem 15): Let En :
An → Pmo ×X ×R+ be a sequence of finite exchange economies as defined
above.

Let An with |An| = n ∈ N be divided into two groups, A1 = {a1, a2, . . . , am}
and A0 = {am+1, am+2, . . . , an} for the same m (m < n) as specified in the
previous Theorem 15, independently of the size of the economy n. Agents
in A1 will be identified as “large” agents, while those in A0 as “small” agents
in the following sense:

(∃ξ ∈ R+)(∀a ∈ A1)[
◦λ(a) ≥ ξ],

and

(∀δ ∈ R+)(∃ν ∈ N)[|T0| > ν =⇒ (∀a ∈ A0)
◦λ(A) ≤ δ].

Then,

(1) there exists K ⊂ Pmo compact in C such that ◦ ≻a∈ K for all a ∈ An,
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and

(2)
∑
a∈An

◦e(a) ◦λ(a) < ∞; and for En ⊂ An,
∑
a∈En

◦λ(a) → 0 =⇒
∑
a∈En

◦e(a) ◦λ(a) → 0.

Moreover, for any δ > 0, there exists n̄ ∈ N such that, for every En,
n ≥ n̄, there exist a price pn ∈ ℓ+1 and a net assignment fn : An → R∞
satisfying

(3)
∑

{ ◦λ(a)| fn(a) ∈ dn(pn, a)} ≥ 1− δ,

and

(4)
∑
a∈An

fn(a)
◦λ(a) ≤ δ.

Theorem 17 (Limit Core Equivalence with the Mixed Hyperfinite Space
of Agents and the Commodity Space ∗X ⊆ ∗R+

∞): Let Eω : A → ∗Pmo ×
∗X × ∗R+ be a hyperfinite exchange economy as defined in Theorem 15
above.

Then, given f ∈ C(Eω), there exists p ∈

{
p ∈ ∗R+

∞

∣∣∣ p.∑
a∈A

e(a) = 1

}
such

that

(1)
∑
a∈A

|p. (f(a)− e(a))λ(a)| ≃ 0,

(2)
∑
a∈A

∣∣∣ inf {p. (f(a)− e(a))λ(a)| x ≻a f(a)}
∣∣∣ ≃ 0.

Theorem 18 (Asymptotic Interpretation of Theorem 17): Let En :
An → Pmo×R+

∞×R+ be a sequence of finite exchange economies as defined
in Theorem 16 above.

Then, for any δ > 0, there exists n̄ ∈ N such that, for every En, n ≥ n̄,
given f ∈ C(En), there exist a price pn ∈ ℓ+1 and a net assignment fn : An →
R∞ such that

(1)
∑
a∈An

∣∣∣pn. (fn(a)− ◦e(a)) ◦λ(a)
∣∣∣ ≤ δ,

(2)
∑
a∈An

∣∣∣ inf {pn. (fn(a)− ◦e(a)) ◦λ(a)| x ≻a f(a)}
∣∣∣ ≤ δ.
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In the light of the detailed discussions in 5.3.4 on the market thickness, or
the relative size requirement, the following conjectures are straightforward,
some of which are under way while others have not been even begun, or else
whose precedents were overlooked in my pre-research investigations.

• Conjecture (A): Exploit the parallelism between the core equiva-
lence/equilibrium existence with the continuum of agents and those
with the mixed measure space of agents. That is, adapt the exis-
tence proof, as surveyed in Hildenbrand (1974, Section 2.2), to
get around additional difficulties due to the mixed nature of the space
of agents, encountered and solved in the proofs of Shitovitz (1973,
Theorems A-D).

• Conjecture (B): Repeat the preceding Conjecture (A), this time
to generalize the hyperfinite existence theorem, e.g., Brown and Lewis
(1981a) toKhan’s characterization of mixed hyperfinite space of agents
(1976, Section 5).

• Conjecture (C): Deduce for G = {En} by an asymptotic interpreta-
tion of the result for Eω expected of the previous Conjecture (B) in
the same manner as Khan (1976, Theorems 1-4) are derived from his
Theorems L1 - L4.

• Conjecture (D): Assume the Finite Characterization of Mixed Space
of Agents (Adapted from Khan (1976, Section 2)) in the above.
Then, replacing the steps involving the external entities from the proofs
based on Conjecture (B), and Khan (1976, Section 6), respec-

tively, and preferably explicating error terms in
1

n
or

1√
n
, where n =

|A|.

– A finite-dimensional special case of Theorem 19 or 20 of the
subsequent Conjecture (E)

– The upper bound may be sharpened so as to be independent ofM ,
by a direct resort to the finite-dimensional Shapley-Folkman
Theorem, instead of its infinite-dimensional generalization, The-
orem 8 in Section 4.
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• Conjecture (E): Repeat the preceding Conjecture (D), this time
by coping with additional complications due to the enlarged X from
Rn

+ to R+
∞ in ways similar to the Elementary Equilibrium Exis-

tence Theorem with R+
∞ in Nomura (1993a, Theorem 1), quoted

as Theorem 4 in Section 2, and the Elementary Core Equiva-
lence Theorem with R+

∞ in Nomura (1992c, Theorem 1), quoted
as Theorem 6 in Section 3, respectively.

Theorem 19 (Elementary Equilibrium Existence with the Mixed
Finite Space of Agents and the Commodity Space X ⊆ R+

∞): Let
E : A → Pmo ×X ×R+ be a finite exchange economy.

Let A with |A| = n ∈ N be divided into two groups, A1 = {a1, a2, . . . , am}
and A0 = {am+1, am+2, . . . , an} for the some m (m < n), independent
of the size of the economy n. Agents in A1 will be identified as “large”
agents, while those in A0 as “small” agents in the following sense:

(∃ξ ∈ R+)(∀a ∈ A1)[λ(a) ≥ ξ],

and

(∀δ ∈ R+)(∃ν ∈ N)[|T0| > ν =⇒ (∀a ∈ A0)λ(A) ≤ δ].

Let M be as specified in Theorem 4 in Section 2.

Then,

(1) there exists K ⊂ Pmo compact in C such that ≻a∈ K for all a ∈ A,

and

(2)
∑
a∈A

e(a)λ(a) < ∞; and for E ⊂ A,
∑
a∈E

λ(a) → 0 =⇒
∑
a∈E

e(a)λ(a) → 0.

Moreover, there exist a price p ∈ ∆ =

{
p ∈ R+

∞

∣∣∣ p.∑
a∈A

e(a) ≤ 1, p ≫ 0

}
and a net allocation g(a) ∈ con d(p, a) for all a ∈ A.

Furthermore, for any such g, there exists a selection f with f(a) ∈
d(p, a) for every a ∈ A such that

(3)

∥∥∥∥∥∑
a∈A

f(a)λ(a)

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
a∈A

(f(a)− g(a))λ(a)

∥∥∥∥∥
2

≤ 2M√
n
.
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Theorem 20 (Elementary Core Equivalence with the Mixed Finite
Space of Agents and the Commodity Space X ⊆ R+

∞): Let E : A →
Pmo ×R+

∞ ×R+ be a finite exchange economy as defined in Theorem
19 above.

Let M be as specified in Theorem 5 in Section 3.

Then, given f ∈ C(E), there exists p ∈

{
p ∈ R+

∞

∣∣∣ p.∑
a∈A

e(a) = 1

}
such that

(1)
∑
a∈A

∣∣∣p. (f(a)− e(a))λ(a)
∣∣∣ ≤ 2

√
2M

n
3
4

,

(2)
∑
a∈A

∣∣∣ inf {p. (f(a)− e(a))λ(a)| x ≻a f(a)}
∣∣∣ ≤ 2

√
2M

n
3
4

.

• Conjecture (F): This combination of the spaces of agents and of
commodities provides a promising budding research framework, best
fit for serious investigations of imperfect competition with a special
emphasis on emergence of the market power exploited by a limited
number of “large” agents.
The Market Thickness, or the Relative Size Requirement in 5.3.4

plays a crucial role in these specific contexts.

• Conjecture (G): A natural candidate for the space of agents to work
with is the Loeb measure space of agents.
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TABLE 6A
Equilibrium Existence Theorems with Mixed Spaces of Agents

and/or Commodities

Mixed Mixed Mixed Finite Mixed
Continuum Measure Hyperfinite Asymptotic Space of
of Agents Space of Space of Space of Agents

Agents Agents Agents (Elementary)

Conjecture

See e.g. (D):

Hildenbrand •Special Case
X ⊆ Rn

+ (1974, Section (A) (B) (C) of Theorem

2.2) 19 below.

•Sharpen the

upper bound.

Theorem Theorem
15. 16.

•True by •True by an

transfer of asymptotic

Theorem 2 (C) for ∗Rν
+, interpreta- Theorem

X ⊆ R+
∞ (Bewley ν ∈ ∗N. ition of the 19.

(1972)) •Extend to Hyperfi- (Conjecture
∗X ⊆ ∗R+

∞ nite Limit (E))

by Theorem Theorem

2 in Sect. 2. 15.

Continuum of
Commodity Theorem 1
Character- (Mas-Colell (F)

istics, Discrete (1975))

Case
Continuum of Theorem 1
Commodity (Ostroy and (F)

Characteristics Zame (1994))

Hyperfinite
Space of

Commodity (G) (F)
Characteristics
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TABLE 6B
Core Equivalence Theorems with Mixed Spaces of Agents and/or

Commodities

Mixed Mixed Mixed Finite Mixed
Continuum Measure Hyperfinite Asymptotic Space of
of Agents Space of Space of Space of Agents

Agents Agents Agents (Elementary)

Conjecture

See e.g. Theorems Theorems Theorems (D):

Hildenbrand A-D L1-L4 1-4 •Special Case
X ⊆ Rn

+ (1974, Section (Shitovitz (Khan (Khan of Theorem

2.1) (1973)) (1976)) (1976)) 20 below.

•Sharpen the

upper bound.

Theorem Theorem
17. 18.

•True by •True by an

transfer of asymptotic

Theorem 1 Theorems interpreta- Theorem
X ⊆ R+

∞ (Bewley 1-4 of Khan tion of the 20.
(1973)) (1976) for Hyperfi-. (Conjecture

∗Rν
+, ν ∈ ∗N. nite Limit (E))

•Extend to Theorem
∗X ⊆ ∗R+

∞, 17.

by Theorem

2 in Sect. 2.

Continuum of
Commodity Theorem 2
Character- (Mas-Colell (F)

istics, Discrete (1975))
Case

Continuum of Theorems
Commodity 3 and 4 (F)

Characteristics (Ostroy and

Zame (1994))

Hyperfinite
Space of

Commodity (G) (F)
Characteristics
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“Lagrangian Function,” “Lagrangian Multiplier,” “Replica Economy,”
“Robinson Crusoe Economy,” “Existence of Walrasian Equilibrium,”
“Robinson, Abraham.”

[2] Nomura, Yoshimasa (2002b): Additional 29 Entries (in Japanese)
in Hisao Kanamori, Ara Kenjiro and Moriguchi Chikashi (Eds.):
Yuuhikaku Dictionary of Economics, Fourth Ed., Tokyo, JPN: Yu-
uhikaku, including: “Efficient Market Hypothesis,” “Arbitrage Pricing
Theory,” “Recursive Utility,” “Asset Pricing Model,” “Backward Induc-
tion,” “Groves-Clark Mechanism,” “Bargaining Set,” “Incomplete Infor-
mation Game,” “Subgame Perfect Equilibrium Point,” “No Arbitrage
Principle,” “No Arbitrage Theory.”

[3] Nomura, Yoshimasa (2013): Additional 52 Entries (in Japanese) in
Hisao Kanamori, Ara Kenjiro and Moriguchi Chikashi (Eds.): Yu-
uhikaku Dictionary of Economics, Fifth (Definitive) Ed., Tokyo, JPN:
Yuuhikaku, including: “American[-Type] Derivative,” “Inada Condi-
tion,” “Complete Financial Market,” “First Fundamental Theorem
of Asset Pricing,” “Used Car Market,” “Hamiltonian,” “Hamilton-
Jacobi Standard Equation,” “Standard Financial Market,” “Hotelling’s
Lemma,” “Almost All Economies,” “Pontryagin’s Function,” “McKen-
zie’s Lemma,” “Martingale,” “No-Arbitrage Price,” “European[-Type]
Derivative,” “Continuity.”

75


