The Korean Innovation System

From Industrial Catch-Up to Technological Leadership?

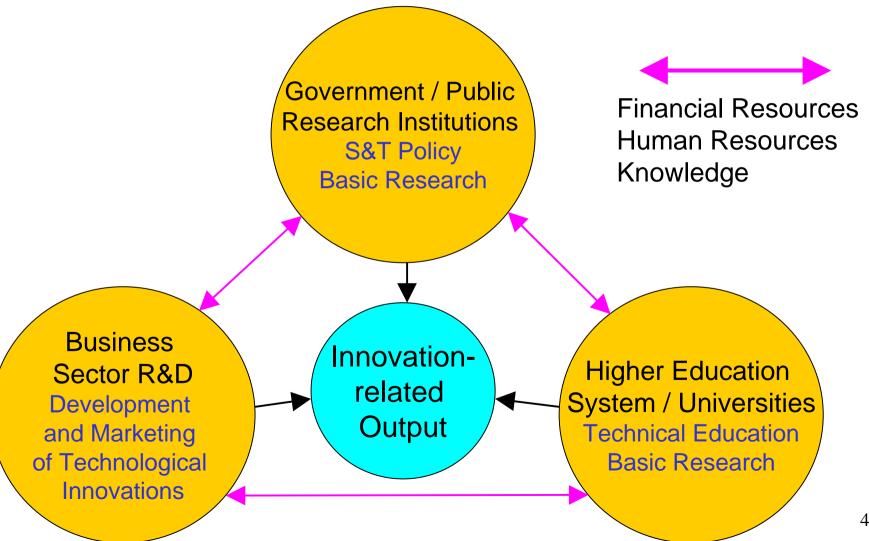
International Conference
"Pathways to Innovation: Policies, Products, and Processes for Competitive Advantage in a Global Economy"

Nishogakusha University, Tokyo, May 20-21, 2005

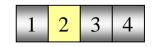
Martin Hemmert

Contents

- 1 The Concept of Innovation Systems
- 2 The Korean Innovation System: Overview
- 3 The Parts of the Korean Innovation System
- 4 Conclusions and Implications


The Concept of Innovation Systems

Emergence of the Concept


- Introduced in the late 80s/early 90s
- Central Issue: Need for systemic analysis
 (overarching single institutions or organizations) to explain innovative performance
- Multiple levels: national, regional, sectoral innovation systems
- Various definitions; common ground:
 Set of relevant institutions and
 the interaction between them

The Concept of Innovation Systems

National Innovation Systems: A Simplified Model

The Korean Innovation System: Overview

Major stages of development

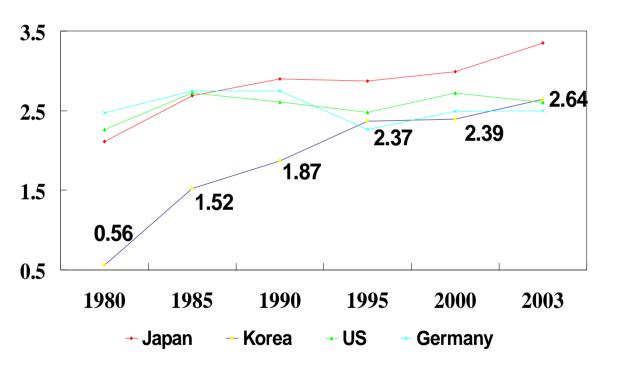
1950s-1970s:

- Technological development through import of capital goods, formation of large firms, import substitution and export promotion
- Very limited formal R&D activities

• 1980s:

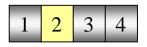
- Formation of industrial R&D base
- Heavy R&D investment by comglomerates (chaebols) to boost technological competitiveness

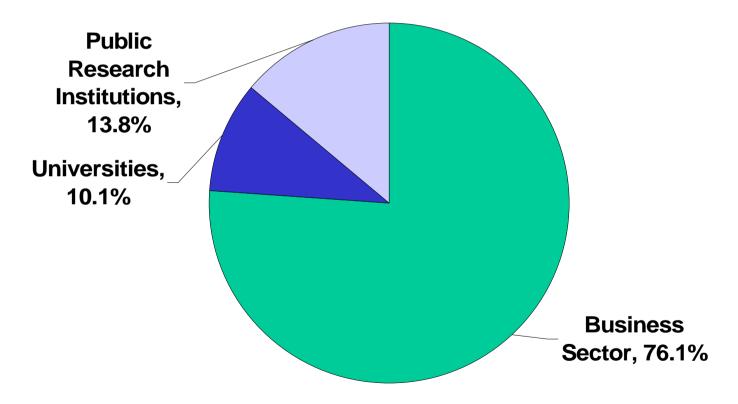
since the 1990s:


- Formation of basic research capabilities
- Emphasis on international co-operation and exchange

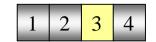
The Korean Innovation System: Overview

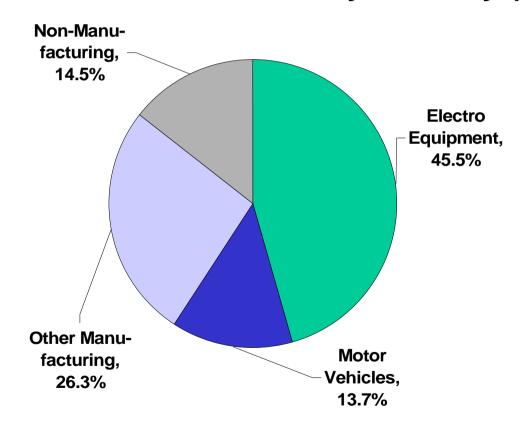
R&D intensity of leading countries (% of GDP)

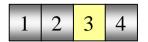

R&D expenditures per person, PPP US-\$ (2003)


US	964.0
Japan	838.4
Germany	657.8
Korea	542.8

⇒ Rapid catch-up to leading countries!

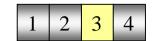

The Korean Innovation System: Overview

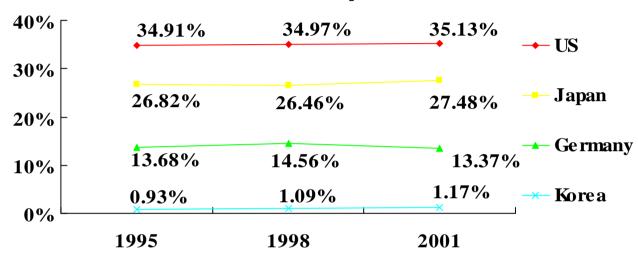

R&D expenditures by performing sector (2003)

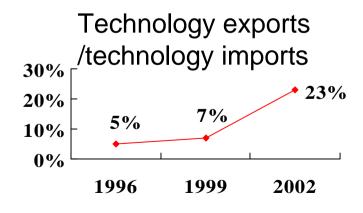

⇒ Heavy reliance on industrial R&D!

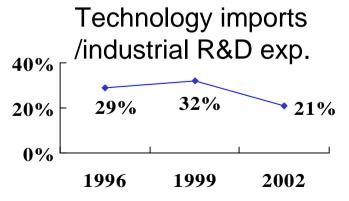
Industrial R&D activities by industry (2003)

⇒ High concentration on IT sector!

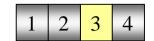

Industrial R&D activities by firm size / type (2003)


Concentration of industrial R&D activities (2003)

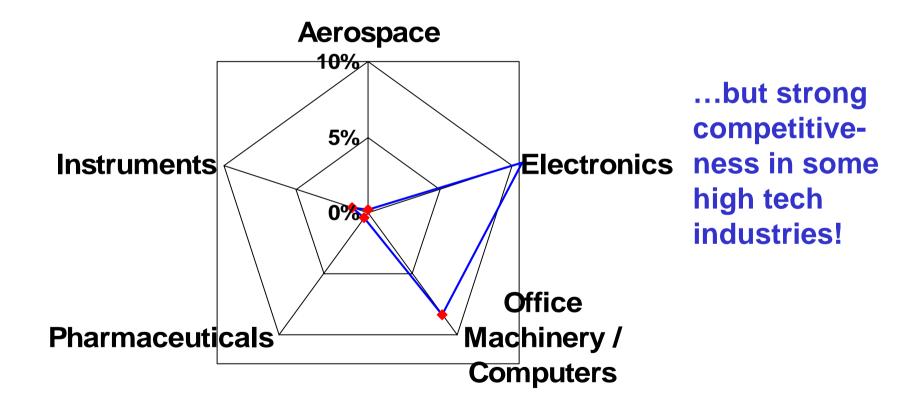

□ Dominating role of leading large firms!



Global share of triad patent families



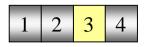
Still weak IP position...



and strong reliance on foreign technology...

Global export market share in high tech industries (2001)

The Parts of the KIS: Government and Public Research Institutions

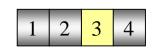


Governmental R&D budget by ministry (2004)

Ministry of Science & Technology	20.5%
Ministry of Commerce, Industry & Energy	19.3%
Office for Government Policy Coordination	11.9%
Ministry of Defense	11.4%
Ministry of Education	11.1%
Ministry of Information & Communication	9.1%
Others	16.7%

- Highly fragmented S&T policy
- Increased priority of S&T policy since the 1990s
- Efforts to enhance structural change (e.g., large scale support for venture firms)

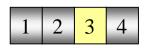
The Parts of the KIS: Government and Public Research Institutions

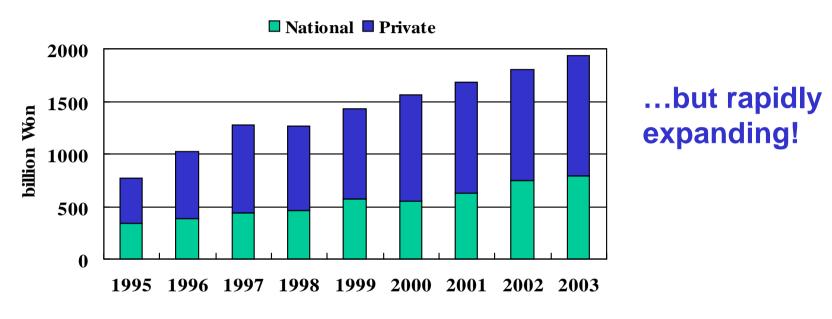


Structural data on research institutions (2003)

Type of institutes	Number of institutes	Number of researchers	Average number of researchers / institute	Proportion of governmental funding	Main orientation
Public	63	3,528	56.0	99.9%	Agric ulture
Governmentally supported	28	8,559	305.7	93.3%	Engineering
Others	78	2,308	29.6	70.7%	Engineering
Total	169	14,395	85.2	92.3%	Engineering (60% of research manpower)

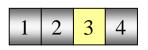
- Predominant governmental funding
- Good fit with needs of industrial sector (engineering)
- Significant capabilities accumulated since the 70s/80s
- Increased flexibility since the 1990s


The Parts of the KIS: Universities and Higher Education System


Features of the Koran Higher Education System:

- Extremely strong emphasis on education in general
- Worldwide highest formal education level of the younger age groups
- Education system strongly criticized for being outdated
- "Brain drain" of high school and college students
- Higher secondary and university education undergoing major reform
 - better fit with practical needs
 - internationalization

The Parts of the KIS: Universities and Higher Education System



R&D spending of universities low...

- Much higher priority given to research
- Networks with firms gradually developing
- Still more investment needed to upgrade R&D infrastructure

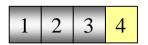
The Parts of the KIS: Inter-organizational Linkages

The Financial Market:

- Indirect financing (banks) traditionally predominant
- Mainly oriented towards large firms, low efficiency
- Financial market reform after 1997
- Government support programs for venture capital
 - ⇒ rapid expansion of venture capital sector
 - ⇒ overheating, need for improved screening standards

The Labor Market:

- Strong dualism between large firms (stable employment, high wages) and SMEs (hire and fire, low wages) until 1997
- Increased flexibility in the skilled labor market after 1997
- Increased entrepreneurial activity as a result of restructuring and harsh employment conditions in the corporate sector

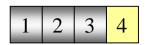

The Parts of the KIS: Inter-organizational Linkages

Inter-organizational and inter-sectoral knowledge flows:

- Poorly developed inter-organizational linkages pre-1997 (exception: firm networks within chaebols)
- Recently gradual improvement due to structural changes in factor markets
- Development of university-industry linkages, fostered by governmental support
- Still widespread stand-alone mentality among managers and firms

Conclusions and Implications

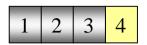
The Korean Innovation System: Overall Evaluation


Strengths:

- strong competitiveness in some high-tech industries
- rapid expansion and skill formation
- comprehensive structural adjustment
- strengthening science base

Weaknesses:

- still heavy concentration of resources on large chaebol firms
- SME/venture sector needs further development
- open network culture / interorganizational links only gradually evolving


Conclusions and Implications

The Korean Innovation System: Future Perspectives

- rapid development and adjustment as a dynamic source of competitive strength
- still some way to go to become a leading country not only in technology, but also in science
- continued competitive pressure from following catch-up countries (China, South-East Asia, India)

Conclusions and Implications

Implications from an international viewpoint

- Korean firms to be taken seriously as innovating competitors (and sometimes technological leaders)
- Strengthening science base and ongoing internationalization make Korean organizations attractive partners for international collaboration in science & technology