
二松学舎大学国際政治経済学部 

Discussion Paper Series 

Inequality in Voting Powers with Multiple Issues

Yukinori Iwata

November 22, 2016

Discussion Paper (Econ) No.9 

FACULTY OF INTERNATIONAL POLITICS AND ECONOMICS 

NISHOGAKUSHA UNIVERSITY



Inequality in Voting Powers with Multiple Issues

Yukinori Iwata∗

November 22, 2016

Abstract

In this study, we extend the inequality measure of power in single-
issue voting situations, which was originally proposed by Laruelle and
Valenciano (Social Choice and Welfare 22: 413–431, 2004). In our model,
there exist multiple issues on which to vote, and for each issue, each voter
has one of three voting options—namely, “yes,” “no,” or “abstention.” We
add a separability axiom to the set of Laruelle and Valenciano’s axioms
that characterize their inequality measure of voting power. Our inequality
measure is represented by a two-stage aggregation procedure, where in
the first stage, the distribution of voting power with regards to each issue
is aggregated into an inequality index based on the Laruelle–Valenciano
measure; then, the second-stage aggregator sums up the inequality index
on each issue.

JEL classifications: D63, D72

Keywords: voting power, inequality measurement, multiple issues, absten-
tion

1 Introduction

In studies of power in voting situations, assessments of the various distribu-
tions of voting power have received less attention than measurements of the
distribution of voting power. The distribution of voting power has been nu-
merically represented by various power indices, such as the Banzhaf (1965) and
Shapley and Shubik (1954) indices. On the other hand, only a few studies—
including, for example, those of Einy and Peleg (1991) and Laruelle and Valen-
ciano (2004)—propose ways of assessing various distributions of voting power.1

Einy and Peleg (1991) axiomatize a family of inequality measurements of voting
power distributions for cooperative games (TU-games), which are generalized

∗Faculty of International Politics and Economics, Nishogakusha University, 6-16 Sanban-
cho, Chiyoda-ku, Tokyo 102-8336, Japan; E-mail: y-iwata@nishogakusha-u.ac.jp

1Weber (2016) recently considered an inequality measurement of two-tier voting systems,
in which a binary decision is made by the representatives of different groups, and the members
of each group determine the vote of the representative.
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Gini functions on distributions based on the Shapley–Shubik index.2 Laruelle
and Valenciano (2004) point out that Einy and Peleg (1991) arbitrarily adopt
the Shapley–Shubik index as a voting power measurement. They do not restrict
their attention to any particular power index, and consider a broader conceptual
framework where voting power is defined as the probability of playing a crucial
role in collective decision-making.3 They construct their inequality measure of
voting power by imposing some reasonable properties on the class of inequality
measures.

In the current study, we extend the normative implication and the practical
application of the Laruelle and Valenciano (2004) inequality measure of vot-
ing power. They had originally intended to develop an inequality measure of
voting power in real-world collective decision-making situations.4 Nevertheless,
their model does not capture some realistic situations, because the model is
based on simple games, where it is assumed that voters cast one of two votes—
namely, “yes” or “no”—to determine the passage or the rejection of a single
issue. Felsenthal and Machover (1997) point out that the “yes” or “no” votes
of voters lack in reality from a practical viewpoint, and propose ternary voting
games, where voters have a third option—namely, “abstention”—in addition
to “yes” and “no” options.5 We adopt ternary voting games and extend the
Laruelle–Valenciano concept of voting power to such games.

We believe that the second, and more important, lack of reality in simple
games is that the set of issues on which to vote is a singleton. This problem
has attracted little attention in the literature on the measurement of voting
power. In real-world voting situations, different voting rules are often applied
to different issues: decisions of the UN Security Council on procedural matters,
for example, are made by the “yes” votes of nine members, while its decisions on
nonprocedural matters are made by the “yes” votes of nine members including
all permanent members. Thus, we can consider voting situations that involve
multiple issues. The aim of this study is to measure the overall inequality of
voting powers when there exist multiple issues on which a collective decision is
to be made.

Our definition of “voting power” is compatible with the concept of the system
of powers proposed by Ju (2010). He considers an opinion aggregation problem
where all members in a society have positive, negative, or neutral opinions on
each of a number of issues. Society aggregates their opinions and makes a binary
decision—namely, acceptance or rejection—on each issue. Our model is relevant

2In the literature on inequality of income distributions, generalized Gini functions are
axiomatically characterized by Waymark (1981).

3This general framework is proposed by Laruelle and Valenciano (2005).
4See Aleskerov et al. (2000), Beisbart and Bovens (2008), and Laruelle and Valenciano

(2002) for practical applications of the Laruelle–Valenciano inequality measure of voting
power.

5Simple games are extended to (j, k) simple games by Bolger (1993), where j is the number
of possible options to vote and k is the number of possible outcomes in a voting situation, and
both options and outcomes are not always ordered in a natural way. Then, simple games are
(2, 2) simple games and ternary voting games are (3, 2) simple games, but both options and
outcomes can be interpreted as being naturally ordered.
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to that of Ju (2010) when “abstention” in our model is interpreted as a neutral
opinion in his model. Ju (2010) introduces a system of powers to represent an
individual’s conditional decisive power with regards to each issue; the system is
a function that assigns each issue to an individual who has power with regards
to the issue and the minimum social consent quotas needed for that individual
to influence social decisions. Ju (2010) characterizes the class of decision rules
that are represented by a system of powers, with three axioms; these axioms
include a monotonicity axiom and an independence axiom.6 Since we impose no
restrictions on decision rules, the class of decision rules in our model contains
those that are represented by Ju’s (2010) system of powers.

Our question is how to measure the overall inequality of voting powers when
multiple issues on which to vote exist. To answer this question, we propose a
two-stage aggregation procedure. In the first stage, the distributions of voting
power with regards to each issue are aggregated by using an inequality index
based on the Laruelle–Valenciano measure; then, the second-stage aggregator
sums up the inequality index on each issue. Laruelle and Valenciano (2004)
provide axiomatic characterization of their inequality measure of voting power
in single-issue voting situations, through some reasonable properties. We add
a separability axiom to the set of their axioms to characterize our inequality
measure of voting powers in multiple-issue voting situations.

Furthermore, we consider the case where the number of voters and the num-
ber of issues are variable. We propose three equivalence principles with respect
to the number of voters or the number of issues, two of which are similar to
those of Laruelle and Valenciano (2004). As a consequence, we show that our
inequality measure of voting powers can be seen as the arithmetic mean of the
Laruelle–Valenciano inequality index of voting power with regards to each issue.

The remaining sections are organized as follows. Section 2 introduces the
model and basic notation. Section 3 defines the concept of voting powers, as
seen in our model. In Section 4, we extend the domain of power profiles to
lotteries over decision rules. Section 5 characterizes our inequality index for
power profiles. Section 6 extends the model to the case where the number of
voters and the number of issues are variable. Section 7 summarizes the paper.

2 Decision Rules

A simple game is a general procedure to make a collective decision on a single
issue, by the “yes” or “no” votes of the members of a committee. We extend
simple games in two directions. In one, the number of issues on which to vote
is multiple, rather than single; in the other, each member has three voting
options—“yes,” “no,” or “abstention”—on each issue.

Let R denote the set of all real numbers and N denote the set of all natural
numbers. Let N = {1, . . . , n} be the set of n voters with n > 1. Let M =

6The third axiom introduced by Ju (2010) is a symmetry condition, that under at least
one linkage from issues to individuals, the rule should symmetrically treat individual i and
issues linked to i and any other individual i′ and issues linked to i′.
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{1, . . . ,m} be the set of m issues with m ≥ 1. It is assumed that each voter
votes for or against each issue, and can also abstain from voting on some issues.
A voter i’s vote is represented by an 1 × m row vector Ti consisting of −1, 0,
or 1. Let Tij be the jth component of Ti; the interpretation is that Tij = 1
when i is voting for issue j, and Tij = −1 when i is voting against. If Tij = 0,
i abstains from voting on issue j. A voting profile is a possible list of voting
behaviors by the voters and it is denoted by an n × m matrix T consisting of
n row vectors T1, . . . , Tn. Thus, we have 3nm possible voting profiles. Let Tnm

be the set of all voting profiles when n voters and m issues exist. Let (T ′
i , T−i)

be the voting profile obtained by replacing Ti of T with T ′
i .

A decision rule for n voters and m issues specifies which voting profiles will
lead to the passage of which issues, and which ones will lead to their rejection.
We shall represent a decision rule with a subset of voting profiles. When a
voting profile leads to the passage of an issue j, it is called a winning profile for
j. Let Wj denote the set of winning profiles for j. Let W = (W1, . . . ,Wm) be a
list of winning profiles for any issue j, which will represent a decision rule for n
voters and m issues. A decision rule is trivial for any issue j, if either T /∈ Wj

or T ∈ Wj holds for any T ∈ Tnm. Thus, we allow that some issues may always
pass or fail.

Let Dnm be the set of all such decision rules for n voters and m issues. Each
of them identifies with the list W of winning profiles for any issue j. We will
prove our results by using some specific decision rules. A decision rule is voter
i’s dictatorship on any issue j if her vote is decisive on j, in the sense that issue
j is passed if and only if she votes “yes” for j—that is, for any T ∈ Tnm and
any j ∈ M , T ∈ Wj if and only if Tij = 1. A decision rule is voter i’s simple
dictatorship on any issue j, if it is voter i’s dictatorship on issue j and is trivial

for any other issues j′. Let d
{i}
j denote voter i’s simple dictatorship on j. A

voter i is a null-voter for any issue j in a decision rule, if her voting behavior
does not influence decision on j—that is, for any T ∈ Tnm, T ∈ Wj if and only
if (T ′

i , T−i) ∈ Wj for any T ′
i .

3 A Measurement of Voting Powers

As in Laruelle and Valenciano (2004, 2005), we define a priori voting power
with regards to any issue j as the probability of voting profiles in which a voter
i exerts power for j, in the sense that she plays a crucial role in making a
collective decision on j according to a given decision rule. As we can see below,
the a priori voting power of any voter i is represented by a vector, each of whose
components denotes the probability of that voter exerting power with regards
to any issue j.

We first consider the definition of exerting voting powers in a reasonable sub-
class of decision rules. Thereafter, we provide the general definition of exerting
voting powers. Let us assume that a decision rule is monotonic and indepen-
dent.7 Monotonicity requires that a decision on any issue j should not respond

7Ju (2010, Proposition 5) shows that a decision rule satisfies monotonicity and indepen-
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negatively whenever any voting profile increases in the sense of the matrix. For-
mally, for any T, T ′ ∈ Tnm with T ≤ T ′ and any j ∈ M , if T ∈ Wj , then
T ′ ∈ Wj . Independence requires that the decision on any issue j depends solely
on the votes of voters for j. Formally, for any T, T ′ ∈ Tnm and any j ∈ M , if
Tij = T ′

ij for any i ∈ N , then T ∈ Wj if and only if T ′ ∈ Wj . Let D̂nm be the
subclass of decision rules that satisfy monotonicity and independence.

If a decision rule is monotonic, then the decision on j does not respond neg-
atively (positively) when any voter i changes her votes in a positive (negative)
way. In addition, if a decision rule is independent, the decision on each issue is
independent of any other issue. Suppose that any voter except for i does not
change her vote. Then, a voter i exerts positive (negative) power for any issue
j if (i) she votes “yes” (“no”) on j or abstains from voting on j, (ii) the issue
j is passed (rejected), and (iii) the decision responds in the opposite manner
when she changes her votes in a negative (positive) way. In general, we can say
that the voter exerts power in positive and negative senses, or both. That is,
her vote on j is crucial to the decision on j. These notions of voting power are
natural extensions of those of Laruelle and Valenciano (2004, 2005) in the “yes”
and “no” options case.

Formally, given a decision rule W ∈ D̂nm, we first introduce the following
notions of voting power:

Ê +
ij = {T ∈ Tnm : There exists T ′

i with Tij ≥ T ′
ij such that T ∈ Wj and (T ′

i , T−i) /∈ Wj}

and

Ê −
ij = {T ∈ Tnm : There exists T ′

i with T ′
ij ≥ Tij such that T /∈ Wj and (T ′

i , T−i) ∈ Wj}.

Thus, Ê +
ij is the set of all voting profiles such that the decision on j changes

from acceptance to rejection when voter i changes her votes on j in a negative
manner. On the other hand, Ê −

ij is the set of all voting profiles such that the
decision on j changes from rejection to acceptance when the voter changes her
votes on j in a positive manner. As mentioned in the Introduction, our model is
relevant to that of Ju (2010) when “abstention” in our model is considered syn-
onymous with his model’s concept of “neutral opinion.” Example 1 illustrates
the relationship between our notion of power and that of Ju (2010).

Example 1. Consider the model of a system of powers proposed by Ju (2010).
To define Ju’s (2010) concept of power, we need consent quotas that represent
the degrees of social consent required for the exercise of the voter’s power. In
this example, we consider a specific case. Given a decision rule W ∈ D̂nm, for
any voter i and any issue j, suppose that the decision on j is made as follows.
For any T ∈ Tnm,

when Tij = 1, T ∈ Wj ⇔ #{i′ ∈ N : Ti′j = 1} ≥ n;

when Tij = 0, T ∈ Wj ⇔ #{i′ ∈ N : Ti′j = 1} ≥ n;

when Tij = −1, T /∈ Wj ⇔ #{i′ ∈ N : Ti′j = −1} ≥ 1,

(1)

dence if and only if it is represented by a list of “decisive structures” that comprise the pair
of disjoint subsets of N with a monotonic property in terms of their set inclusion.
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where # denotes the cardinality of a set.
The last parts of the three equations in Equation (1) denote consent quotas.

Then, according to Ju’s (2010) definition, voter i has the power with regards to
issue j. Under the decision rule, voter i requires unanimous consent to accept
issue j, while she does not need any consent to reject issue j. Thus, Ju (2010)
defines power as conditional (on social consent) decisiveness, which is a concept
that relates to decision rules. Under the decision rule, note that the decision on
j does not change for any voting profile when voter i is replaced with any other
voter i′.

On the other hand, our concept of power with regards to j relates to the
decision on j for two voting profiles, in which only i votes in a different manner.
In our terminology, every voter i exerts power with regards to issue j in both
positive and negative senses only when any other voter votes for j. That is, any
voting profile T ∈ Tnm such that Tij = 1 for any i ∈ N is contained in Ê +

ij , and
any voting profile T ∈ Tnm such that Tij ≤ 0 and Ti′j = 1 for any i′ ∈ N\{i}
is contained in Ê −

ij . Thus, in this case, the power with regards to j is equally
shared by all voters. In general, if a decision rule is represented by Ju’s (2010)

system of powers, then we can define the two sets Ê +
ij and Ê −

ij according to the
decision rule.

We now provide the general definition of exerting voting powers under any
decision rule. Since a decision rule is not always monotonic, the decision on an
issue j could respond negatively when a voting profile increases in the sense of
the matrix. Moreover, the decision rule is not always independent; the decision
on an issue j could depend on the votes of voters for any other issue j′. There-
fore, we define that a voter i exerts positive (negative) power for an issue j if (i)
the issue j is passed (rejected) and (ii) the decision responds oppositely when
the voter changes her votes in any manner. Thus, we can say that she exerts
voting power for j in the general sense when her vote (not only on issue j) is
crucial to the decision on j.

Formally, given a decision rule W ∈ Dnm, we extend the aforementioned
notions of voting power to the case where the decision rule W is not always
monotonic and independent:

E +
ij = {T ∈ Tnm : There exists T ′

i such that T ∈ Wj and (T ′
i , T−i) /∈ Wj}

and

E −
ij = {T ∈ Tnm : There exists T ′

i such that T /∈ Wj and (T ′
i , T−i) ∈ Wj}.

In what follows, we adopt the general notions of voting power, in order to
measure the inequality of voting powers.

Those aforementioned definitions relate to a posteriori descriptions of voting
powers after the vote is cast. The problem is how to evaluate the a priori voting
powers of various voters in our voting situations, where “a priori” means “prior
to the vote being cast.” As Laruelle and Valenciano (2004) point out, a priori
voting powers in general depend on the structure of the decision rule and the
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probability over voting profiles. Clearly, the decision rule W influences whether
a voting profile T is contained in E +

ij or E −
ij . From the viewpoint of evaluating a

priori voting powers, the probability of T influences the voters’ expectations of
exerting powers. Thus, we use a distribution of probability over all conceivable
voting profiles to evaluate the a priori voting powers of various voters. Let
p : Tnm → R be a probability distribution over all possible voting profiles—that
is, a mapping that associates with each voting profile T ∈ Tnm its probability of
occurrence p(T ), where 0 ≤ p(T ) ≤ 1 for any T ∈ Tnm, and

∑
T∈Tnm

p(T ) = 1.
Let Pnm be the set of all distributions of probability over Tnm.

Given a decision rule and a distribution of probability over all voting profiles,
voter i’s a priori voting power with regards to issue j can be defined as the
probability of voting profiles such that voter i can exert power with regards to
issue j. Formally, we define the following notion.

Definition 1. For a given decision rule W ∈ Dnm and a distribution of prob-
ability over the voting profiles p ∈ Pnm, voter i’s power with regards to issue j
is given by:

Φj
i (W , p) :=

∑
T∈E +

ij

p(T ) +
∑

T∈E −
ij

p(T ) =
∑

T∈E +
ij

(T ′
i ,T−i)∈E −

ij

(p(T ) + p(T ′
i , T−i)). (2)

Let Φi(W , p) be a list of voter i’s voting powers with regards to any issue
j—that is, we define Φi(W , p) := (Φ1

i (W , p), . . . ,Φm
i (W , p)). Thus, voter i’s

voting powers are represented by a vector, each of whose components is the
voter’s voting power with regards to any issue j. Let Φ(W , p) be a list of all
voters’ voting powers, called a power profile. That is, we define

Φ(W , p) =

Φ1
1(W , p) · · · Φm

1 (W , p)
...

. . .
...

Φ1
n(W , p) · · · Φm

n (W , p)

 = (Φ1(W , p), . . . ,Φn(W , p))−1.

4 Extended Power Profiles

In this section, we extend power profiles to profiles with probabilities over deci-
sion rules, in which voter i’s power with regards to issue j is represented by the
probability of her exerting power when a decision rule W and a voting profile
T are randomly chosen according to their probabilities. As Laruelle and Valen-
ciano (2004) explain, any inequality index on the set of power profiles—that is,
the set {Φ(W , p) : W ∈ Dnm} for any p ∈ Pnm—would be ordinally equivalent
to any increasing monotonic transformation of it. In addition, Laruelle and
Valenciano (2004) assume that a normative preference over power profiles is a
von Neumann–Morgenstern preference on some subsets of the profiles, used to
restrict the degrees of freedom for an inequality index.

Let us introduce some notation to define the probability profiles of voting
powers. Let L (Dnm) denote lotteries over the set of decision rules. A lottery
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l ∈ L (Dnm) can be represented by the mapping l : Dnm → R, such that
for any W ∈ Dnm, l(W ) ≥ 0, and

∑
W ∈Dnm

l(W ) = 1, where l(W ) is the
probability of making a collective decision according to decision rule W . We
consider Dnm ⊆ L (Dnm), which implies that each decision rule W could be
chosen with probability 1 (i.e., l(W ) = 1). Given l, l′ ∈ L (Dnm), and λ ∈ [0, 1],
let λl ⊕ (1 − λ)l′ denote the lottery such that (λl ⊕ (1 − λ)l′)(W ) := λl(W ) +
(1 − λ)l′(W ). We define any “convex combination” of lotteries in a similar
way. For example, 1

2W ⊕ 1
2W ′ will be the lottery that assigns one half to

decision rule W and the other half to W ′. The support of a lottery l is the set
sup(l) := {W ∈ Dnm : l(W ) > 0}.

The general measure of voter i’s voting power with regards to issue j, which is
given by Equation (2), can be naturally extended by using lotteries in L (Dnm).
For any lottery l ∈ L (Dnm), and any probability distribution p ∈ Pnm, we
define

Φ̄j
i (l, p) :=

∑
W ∈Dnm

l(W )Φj
i (W , p),

which represents the probability of voter i exerting power with regards to issue
j when decision rule W is randomly chosen according to lottery l, and p(T ) is the
probability of each voting profile T ∈ Tnm. Let Φ̄i(l, p) = (Φ̄1

i (l, p), . . . , Φ̄
m
i (l, p))

be a list of such extended voter i’s powers with regards to any issue j. We now
define an extended power profile Φ̄(l, p) as follows:

Φ̄(l, p) =

Φ̄1
1(l, p) · · · Φ̄m

1 (l, p)
...

. . .
...

Φ̄1
n(l, p) · · · Φ̄m

n (l, p)

 = (Φ̄1(l, p), . . . , Φ̄n(l, p))
−1.

Thus, the domain of extended power profiles composes the set Φ̄(L (Dnm)×
Pnm), or ∪p∈PnmΦ̄(L (Dnm×{p}), of n×mmatrices. We construct an inequal-
ity index on this domain. Note that those n×m matrices can be interpreted as
nm-dimensional vectors in Rnm. In the next section, we will interpret extended
power profiles as nm-dimensional vectors, rather than n ×m matrices. In ad-
dition, as Laruelle and Valenciano (2004) mention, the properties to single out
an inequality index are applicable to any restricted domains of extended power
profiles whose form is Φ̄(L (Dnm)× {p}) for any p ∈ Pnm.

5 An Inequality Index for Extended Power Pro-
files

In this section, we construct an inequality index for extended power profiles
that represent the probabilities of exerting powers, in the sense that voters play
a crucial role in making a collective decision. In summary, we propose the
following composition in voting situations for n voters and m issues:

L (Dnm)× Pnm
Φ̄−→ Φ̄(L (Dnm)× Pnm)

Inm−−→ R.
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A function Inm assigns a real number to each extended power profile in Φ̄(L (Dnm)×
Pnm), which is interpreted as a measure of the degree of inequality in voting
powers among various voters. After all, we consider a composite index Inm ◦ Φ̄
that compares all pairs (l, p) in L (Dnm)×Pnm. If a probability p over voting
profiles is fixed, it compares extended power profiles under the fixed probability
p.

As in Laruelle and Valenciano (2004), we intend to single out an inequality
index by successively imposing some reasonable properties on such indices; this
will gradually narrow down the class of them. As mentioned in Section 4, any
extended power profile Φ̄(l, p) is represented by an n ×m matrix, while it can
be interpreted as an nm-dimensional vector in Rnm. Let α = (α1, . . . , αm) be
an nm-dimensional vector, where αj is an n-dimensional vector for any j ∈
{1, . . . ,m} and corresponds to the jth column vector of the n × m matrix α.
Let αj

i be the ith component of αj . To focus on αj , we may write α = (αj , α−j).
Therefore, (βj , α−j) is the nm-dimensional vector obtained by replacing αj of
α with βj .

We first consider only the extended power profiles in the (nm − 1)-simplex
∆nm, whose extreme points are the canonical basis {eji : i ∈ N, j ∈ M} of Rnm,
where

ej
′

i′ =

{
1 if i = i′ and j = j′

0 if otherwise.

Proposition 1 shows that any subdomain of an inequality index, which is
Φ̄(L (Dnm) × {p}) for any p ∈ Pnm, contains the simplex ∆nm. In the next
step, we characterize an inequality index on the simplex ∆nm and extend it to
the whole domain Φ̄(L (Dnm)× Pnm) of all extended power profiles.

Proposition 1. For any p ∈ Pnm, ∆nm ⊆ Φ̄(L (Dnm)× {p}).

Proof. We will show that extended power profiles in ∆nm can be constructed by
using the lotteries over the nm possible simple dictatorships, irrespective of the
distribution of probability over the voting profiles. Note that for any i ∈ N and
any j ∈ M , regardless of the distribution p ∈ Pnm, it follows from Equation
(2) that

Φj
i (d

{i′}
j′ , p) =

{
1 if i = i′ and j = j′

0 otherwise.

Then, for any l ∈ L (Dnm) with support in {d{i}j : i ∈ N, j ∈ M}, and any
p ∈ Pnm, we have

Φ̄(l, p) =
∑
j∈M

∑
i∈N

l(d
{i}
j )Φ(d

{i}
j , p) =

∑
j∈M

∑
i∈N

l(d
{i}
j )eji .

For any α ∈ ∆nm, let lα denote the random simple dictatorship in L (Dnm)

such that lα(d
{i}
j ) = αj

i . Since lα =
⊕

i∈N,j∈M αj
id

{i}
j , we have Φ̄(lα, p) = α for

any p ∈ Pnm. Thus, for any p ∈ Pnm, we have

∆nm =
{
Φ̄(l, p) : l ∈ L (Dnm) s.t. sup(l) ⊆

{
d
{i}
j : i ∈ N, j ∈ M

}}
.
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Therefore, we have ∆nm ⊆ Φ̄(L (Dnm)× {p}).

We now successively impose some reasonable properties on inequality in-
dices for extended power profiles and narrow down the class of them. The
first two properties bear the same implications as the axioms used by Laruelle
and Valenciano (2004) to characterize their inequality index on a single issue.
Anonymity is a reasonable property in the inequality literature and requires
that an inequality measurement treat voters symmetrically or equally.

Anonymity (AN). For any extended power profile α and any permutation π of
N , Inm(α) = Inm(π(α)).

The second axiom requires that an inequality measurement be rational, in
the sense that the inequality index can be interpreted as a von Neumann–
Morgenstern preference on at least some subdomain of extended power profiles.
That is, an inequality index satisfies convex linearity or affinity on the restricted
domain. Laruelle and Valenciano (2004) required this condition only for any
pair of extended power profiles such that the distributions of voting power are
ordinally the same. However, in fact, they require this property only for the
nonincreasing distributions of voting power. We adopt the latter notion, which
is relevant to the nonincreasing comonotonic matrices discussed by Gajdos and
Waymark (2005), as found in the literature on multidimensional inequality in
individuals’ well-being. Formally, an extended power profile α is nonincreasing
comonotonic if αj

1 ≥ · · · ≥ αj
n for any j ∈ M . In addition to this modification,

we require the rationality condition only on nonincreasing comonotonic extended
power profiles such that the total sums of their components are identical.8 Note
that for any extended power profiles α, β in ∆nm, we have

∑
j∈M

∑
i∈N αj

i =∑
j∈M

∑
i∈N βj

i . Then, we propose the following property.

Expected Inequality on Comonontonic Profiles (EICP). For any nonincreas-
ing comonotonic extended power profiles α, β such that

∑
j∈M

∑
i∈N αj

i =∑
j∈M

∑
i∈N βj

i , and any λ ∈ [0, 1],

Inm(λα+ (1− λ)β) = λInm(α) + (1− λ)Inm(β).

The next axiom is added to the set of Laruelle and Valenciano’s (2004)
axioms that characterize their inequality index of power in single-issue voting
situations. The axiom is concerned with the separability of an inequality index.
Any issue j is considered separable from other issues if an inequality index
is independent of the construction of subdistributions of voting powers with
regards to them. That is, an inequality index for any two extended power
profiles—in which only the voting power distributions on issue j are different—
is independent of any voting power distributions on the remaining issues. This

8Laruelle and Valenciano (2004) also consider a similar restriction, to characterize their
inequality measure for extended power profiles.
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requirement is plausible in voting situations where an inequality index evaluates
the a priori voting powers of various voters and also relates to a von Neumann–
Morgenstern preference from a normative viewpoint.

Separability (SEP). For any j ∈ M and any αj , βj , ᾱ−j , and β̄−j , Inm(αj , ᾱ−j) ≥
Inm(βj , ᾱ−j) ⇔ Inm(αj , β̄−j) ≥ Inm(βj , β̄−j).

The next result implies that the set of all nonincreasing comonotonic ex-
tended power profiles in ∆nm is an (nm − 1)-subsimplex of the simplex ∆nm,
whose extreme points are defined as follows:

θst = ( 0, . . . , 0︸ ︷︷ ︸
n(t−1) times

, 1
s , . . . ,

1
s︸ ︷︷ ︸

s times

, 0, . . . , 0︸ ︷︷ ︸
nm−n(t−1)−s times

).

Lemma 1. The set of all nonincreasing comonotonic extended power profiles
(α1, . . . , αm) ∈ ∆nm is an (nm−1)-simplex whose extreme points are θ11, . . . , θst, . . . , θnm.
Moreover, by setting αj

n+1 = 0 for any j ∈ M , we have:

(α1, . . . , αm) =
m∑
t=1

n∑
s=1

s(αt
s − αt

(s+1))θ
st.

Proof. It is sufficient to verify that (α1, . . . , αm) can be uniquely written as the
conclusion that we need.

Theorem 1 states that any inequality index that satisfies the three aforemen-
tioned axioms can be written as follows: after obtaining a nonincreasing comono-
tonic extended power profile by permuting each n-dimensional vector of any
extended power profile in ∆nm, the nonincreasing comonotonic extended power
profile is aggregated into an inequality index; then, the values of Inm(θ11),. . .,
Inm(θst),. . ., Inm(θnm) play a crucial role in determining the degree of inequal-
ity.

Theorem 1. An index Inm : ∆nm → R satisfies AN, EICP, and SEP on ∆nm

if and only if it can be written as:

Inm(α1, . . . , αm) =

m∑
t=1

n∑
s=1

(
sInm(θst)− (s− 1)Inm(θ(s−1)t)

)
α̂t
s, (3)

where α̂ = (α̂1, . . . , α̂m) is a nonincreasing comonotonic extended power profile
obtained by permuting each α1, . . . , αm, and Inm(θ0t) = 0 for any t = 1, . . . ,m.

Proof. It is easy to show that the index given by Equation (3) satisfies AN,
EICP, and SEP. Now suppose that an index Inm satisfies these axioms. By AN,
we have Inm(α1, 0n(m−1)) = Inm(α̂1, 0n(m−1)). We have Inm(α1, α2, . . . , αm) =
Inm(α̂1, α2, . . . , αm) by SEP. Again, by AN, we have Inm(0n, α2, 0n(m−2)) =
Inm(0n, α̂2, 0n(m−2)). Hence, it follows from SEP that Inm(α̂1, α2, . . . , αm) =
Inm(α̂1, α̂2, α3, . . . , αm). Thus, Inm(α1, α2, . . . , αm) = Inm(α̂1, α̂2, α3, . . . , αm)
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can be obtained. By repeating the above arguments, we have Inm(α1, . . . , αm) =
Inm(α̂1, . . . , α̂m). By Lemma 1 and EICP, we obtain:

Inm(α̂1, . . . , α̂m) = Inm

(
m∑
t=1

n∑
s=1

s(α̂t
s − α̂t

(s+1))θ
st

)
(by Lemma 1)

=

m∑
t=1

n∑
s=1

s(α̂t
s − α̂t

(s+1))Inm(θst) (by EICP)

=
m∑
t=1

n∑
s=1

(
sInm(θst)− (s− 1)Inm(θ(s−1)t)

)
α̂t
s.

In the single-issue case, Laruelle and Valenciano (2004) impose further ax-
ioms to narrow down the class of the inequality indices and single out one index.
Before we formalize their axioms in our model, we introduce some definitions.
For any nonempty subset U ⊆ N and any issue j ∈ M , let θUj be the ex-
tended power profile such that U -components for issue j are 1

u and any other
components of the profile are 0, where u is the cardinality of U . The profile
θUj captures the situation where only issue j is a nontrivial collective decision
problem and each voter in U has equal voting power with regards to j. In such
a situation, Laruelle and Valenciano (2004) impose the following two properties
on inequality indices. The first requires that an inequality index be constantly
sensitive to the addition of null-voters. The second requires that the degree of
inequality be minimal when all voters have equal voting power; then, its value
is normalized to zero. We require these properties for any issue j ∈ M .

Constant Sensitivity to Null-voters (CSN). For any U, V ⊆ N , any i ∈ N\U ,
any i′ ∈ N\V , and any j ∈ M , Inm(θUj) − Inm(θU∪{i}j) = Inm(θV j) −
Inm(θV ∪{i′}j) > 0.

Zero Normalization (ZN). For any j ∈ M , Inm(θNj) = 0.

Lemma 2 shows the logical relationship of the above axioms, and AN is
implied by the joint satisfaction of EICP and CSN.

Lemma 2. If an index Inm : ∆nm → R satisfies EICP and CSN, then it
satisfies AN.

Proof. Let Inm be an index satisfying EICP and CSN. For any j ∈ M , define
Sj := Inm(θUj) − Inm(θU∪{i}j), which by CSN does not depend on U ⊆ N
and i ∈ N . Let u < n. By applying CSN (n − u) times, we can easily ob-
tain Inm(θUj) = Inm(θNj) + (n − u)Sj , which implies that Inm(θUj) depends
only on u. Therefore, if u = v, then we have Inm(θUj) = Inm(θV j), where
v is the cardinality of V . Now take any α ∈ ∆nm. By Lemma 1, α can be
uniquely written as a convex combination of the extreme points of an (nm−1)-
simplex of comonotonic extended power profiles. If these extreme points are
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θU1j , θU2j , . . . , θUnj for any j ∈ M , where the cardinality of Us is s, we have
α =

∑m
t=1

∑n
s=1 λ

t
sInm(θUst) (for some λt

s ≥ 0 such that
∑m

t=1

∑n
s=1 λ

t
s = 1).

Then, by EICP, we have Inm(α) =
∑m

t=1

∑n
s=1 λ

t
sInm(θUst). However, we then

have Inm(α) = Inm(π(α)) for any permutation π of N , because each Inm(θUst)
depends only on s and t, which implies that Inm satisfies AN.

Theorem 2 shows that the remaining four axioms characterize (up to positive
proportionality constants) an inequality index on ∆nm, which is a two-stage
aggregation procedure where the first-stage aggregator is based on the Laruelle–
Valenciano measure for each issue and the second-stage aggregator sums up the
inequality index on each issue.

Theorem 2. There exists a unique (up to positive proportionality constants St

for any t = 1, . . . ,m) inequality index Inm : ∆nm → R, which satisfies EICP,
SEP, CSN, and ZN, and it is given by

Inm(α1, . . . , αm) =

m∑
t=1

(
St

n∑
s=1

(n− 2s+ 1)α̂t
s

)
. (4)

Proof. First, it is easy to show that the index given by Equation (4) satisfies
the axioms in Theorem 2. Now, suppose that an index Inm satisfies them.
By Lemma 2, it also satisfies AN. Therefore, by Theorem 1, Inm(α1, . . . , αm)
is given by Equation (3). We define Sj := Inm(θUj) − Inm(θU∪{i}j) for any
j ∈ M , where Sj does not depend on any pair i, U such that i /∈ U ⊆ N because
Inm satisfies CSN. It immediately follows from ZN that Inm(θst) = (n − s)St

for s = 1, . . . , n and t = 1, . . . ,m. Then, by substituting them in Equation (3),
we can obtain Equation (4).

In the next step, given this index on the subdomain ∆nm of extended power
profiles, we extend it to the whole domain Φ̄(L (Dnm) × Pnm), and any re-
stricted domain Φ̄(L (Dnm) × {p}) for any p ∈ Pnm. As in the Laruelle and
Valenciano (2004) model, any extended power profile in those domains is propor-
tional to an extended power profile in ∆nm, which by Proposition 1 is contained
in all those domains. Therefore, by imposing the four axioms in Theorem 2 on
∆nm, we obtain a relative index of inequality that ranks all extended power pro-
files in the whole domain. An inequality index is relative if Inm(α) = Inm(kα)
for any extended power profile α and any k > 0.

Therefore, there is a unique (up to positive proportionality constants St

for any t = 1, . . . ,m) relative inequality index on Φ̄(L (Dnm) × Pnm), and on
Φ̄(L (Dnm)×{p}) for any p ∈ Pnm, that satisfies EICP, SEP, CSN, and ZN on
∆nm, and it is given by

Inm(α1, . . . , αm) =
m∑
t=1

(
St

n∑
s=1

(n− 2s+ 1)
α̂t
s∑

j∈M

∑
i∈N αj

i

)
. (5)

Equation (5) represents a two-stage aggregation procedure where, in the first
stage, the distribution of voting power with regards to each issue is aggregated
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into an inequality index based on the Laruelle–Valenciano measure. Then, the
second-stage aggregator sums up the inequality index on each issue. As Laruelle
and Valenciano (2004) mention, if we choose St = 1

n for m = 1 as the value of
the constant, the Laruelle–Valenciano measure is equivalent to the Gini index
discussed in the literature on inequality of income distributions.

Consider the case where the four axioms in Theorem 2 are imposed on the
whole domain. Laruelle and Valenciano (2004) first required their EICP axiom
for any pair of extended power profiles such that the distributions of voting
power are ordinally the same. However, they had to use a restricted version of
their EICP axiom, as defined in this paper, to characterize their inequality index
on the whole domain. This is because, as Laruelle and Valenciano (2004) point
out, an unrestricted EICP axiom joined with CSN and ZN implies an absolute
index—something that is incompatible with relative indices. Because the same
problem is also encountered with our model, we define EICP in the restricted
manner.

Finally, we summarize the above discussions in Theorem 3.

Theorem 3. There exists a unique (up to positive proportionality constants St

for t = 1, . . . ,m) relative inequality index Inm : Φ̄(L (Dnm) × Pnm) → R that
satisfies EICP, SEP, CSN, and ZN; it is given by Equation (5).

By Proposition 1, this characterization is valid when we restrict the domain
of an inequality index to the form Φ̄(L (Dnm)× {p}) for any p ∈ Pnm.

6 Variable Numbers of Voters and Issues

In this section, we consider the case where both the number of voters and the
number of issues are variable. In many voting situations, these two numbers
are not fixed. For example, the number of bills submitted each year and the
number of legislators who vote on them are variable. Thus, in general, we can
define an inequality index of voting powers as I :

∪
m

∪
n Φ̄(L (Dnm)×Pnm) →

R. On the other hand, the axioms discussed in Section 5 are imposed on the
restriction of such a whole index to extended power profiles with any number
of voters and any number of issues. Then, we could obtain a family of indices
I = {Inm : Φ̄(L (Dnm)× Pnm) : n = 2, 3, . . . , and m = 1, 2, . . .} with a family
of positive constants

(
St
nm; t = 1, . . . ,m

)
n,m∈N,n̸=1

.

We now work to characterize a specific index I by assuming equivalence prin-
ciples relative to the number of voters and the number of issues. In a single-issue
case, Laruelle and Valenciano (2004) propose two equivalence principles. The
first principle requires that a dictatorship has a common degree of inequality,
irrespective of the number of voters. The second principle requires that if the
number of null-voters is the same, the degree of inequality remains the same—
inasmuch as voting power is equally shared by the remaining voters—regardless
of the number of voters. We extend these two principles to the case of multiple
issues.

14



Simple Dictatorship Equivalence Principle (SDEP). For any n,m ∈ N, any j ∈
M , and any α, β such that any issue j′ ̸= j is trivial and

αj = (1, 0, . . . , 0︸ ︷︷ ︸
n times

) and βj = (1, 0, . . . , 0︸ ︷︷ ︸
n+1 times

),

I(α) = I(β).

Simple Null-voter Equivalence Principle (SNEP). For any n,m ∈ N, any j ∈ M ,
and any α, β such that any issue j′ ̸= j is trivial and

αj = ( 1s , . . . ,
1
s︸ ︷︷ ︸

s times

, 0, . . . , 0︸ ︷︷ ︸
n−s times

) and βj = (1, 0, . . . , 0︸ ︷︷ ︸
n−s times

),

I(α) = I(β).

By using either of the two equivalence principles, we can narrow down a
family of positive constants

(
St
nm; t = 1, . . . ,m

)
n,m∈N,n̸=1

. For anym = 1, 2, . . .,

SDEP assigns a common maximum of inequality to each simple dictatorship
for any number of voters. Therefore, given the number of issues m, we have
St
nm = ( 1

n−1 )S
t
m for t = 1, . . . ,m, where St

m is an arbitrary positive constant.
On the other hand, given the number of issues m, SNEP implies that all of
the positive constants are equal for any t = 1, . . . ,m—that is, St

nm = St
m for

t = 1, . . . ,m, where St
m is an arbitrary positive constant.

Next, we consider an equivalence principle when the number of issues is vari-
able. Compare the following two decision rules. One is a dictatorship on a single
issue, and the other is a decision rule under which voting power with regards
to each issue is almost equally shared by all voters. Under the latter decision
rule, the Laruelle–Valenciano index on each issue is slightly positive. Then, if
an inequality index is simply the total sum of the Laruelle–Valenciano indices,
the overall index in the latter could be greater than that of the former when the
number of issues in the latter is sufficiently large; this is counterintuitive. With
this problem in mind, we set up the maximal inequality for extended power
profiles when the number of issues varies.

A reasonable starting point is to assign a common maximal degree of in-
equality to decision rules in which there exists a common dictator on each issue,
regardless of the number of issues. Formally, we define this principle as follows.

Dictatorship Normalization (DN). For any n,m,m′ ∈ N and any α, β such that
any αj = (1, . . . , 0) for any j ∈ M and βj′ = (1, . . . , 0) for any j′ ∈ M ′,

I(α) = I(β),

where m and m′ are the cardinality of M and M ′, respectively.

Thus, any extended power profiles in which there exists a common dictator
on each issue correspond to the maximal inequality, regardless of the number

15



of issues. This implies that St
m = 1

mS, where S is an arbitrary positive con-
stant. Therefore, we have two indices, depending on whether SDEP or SNEP
is assumed, up to a positive constant. We summarize the above observations in
Theorem 4.

Theorem 4. There exists a unique (up to a positive proportionality constant)
inequality index I :

∪
m

∪
n Φ̄(L (Dnm)× Pnm) → R that satisfies EICP, SEP,

CSN, and ZN for any n,m ∈ N, n ̸= 1, and that satisfies DN, and either SDEP
or SNEP. They are respectively given, up to a positive proportionality constant,
by:

IDP (α1, . . . , αm) =
1

m(n− 1)

m∑
t=1

( n∑
s=1

(n− 2s+ 1)
α̂t
s∑

j∈M

∑
i∈N αj

i

)
, (6)

INP (α1, . . . , αm) =
1

m

m∑
t=1

( n∑
s=1

(n− 2s+ 1)
α̂t
s∑

j∈M

∑
i∈N αj

i

)
. (7)

From Equations (6) and (7), it is possible to interpret that our two inequality
indices of powers in multiple-issue voting situations are the arithmetic means of
the two Laruelle–Valenciano indices on each issue. As in Laruelle and Valenciano
(2004), the two indices differ only in a multiplicative factor that depends only
on the number of voters and the number of issues, and which have the following
relationship:

IDP =
INP

n− 1
.

We now make a few remarks on our inequality indices of voting powers. Al-
though those indices are simple and reasonable from a normative viewpoint, they
might create problems in real-world voting situations. In the example offered
in the Introduction of decisions made by the UN Security Council, nonprocedu-
ral matters may not be considered as important as procedural matters. Since
our inequality indices impose the same weight on each issue, it is impossible to
capture the varying degrees of importance among the various issues. Thus, it
might be restrictive for a positive proportionality constant St

m to be the same
for any t = 1, . . . ,m, because it could represent the degree of importance of an
issue. Thus, the problem of assigning a degree of importance to each issue is
left unresolved, in those cases where one would like to measure the inequality
of voting powers in practical voting situations.

7 Concluding Remarks

In this study, we extend the inequality measure of voting power proposed by
Laruelle and Valenciano (2004) to a case in which there are multiple issues
on which to vote. Instead of simple games, our model is based on ternary
voting games; for each issue, each voter has three voting options—namely, “yes,”
“no,” and “abstention.” In voting situations, voting power is defined as the
probability of there being voting profiles in which a voter will play a crucial role
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in collective decision-making. We propose a two-stage aggregation procedure
where in the first stage, the distribution of voting power with regards to each
issue is aggregated into an inequality index based on the Laruelle–Valenciano
measure; then, the second-stage aggregator sums up the inequality index on
each issue.

This study provides an axiomatic foundation of our inequality measure of
voting powers by adding an axiom, Separability (SEP), to the set of axioms
that characterize the Laruelle–Valenciano inequality measure of voting power.
In the case where the number of voters and the number of issues are variable, we
propose three equivalence principles with respect to the number of voters or the
number of issues, two of which are similar to those of Laruelle and Valenciano
(2004). Then, we show that our inequality measure of voting powers can be
expressed as the arithmetic mean of the Laruelle–Valenciano inequality index
of voting power with regards to each issue.

Finally, we highlight an open question otherwise not addressed by this study.
Suppose that 2 voters and 2 issues exist. Consider the following two decision
rules—that is, voter 1’s dictatorship on both issues, and the combination of
voter 1’s dictatorship on issue 1 and voter 2’s dictatorship on issue 2. Our
inequality measure of voting powers assigns the same maximal inequality to the
two decision rules. However, the former might be more unequal than the latter,
because while the former is uneven, the latter is even in terms of the share of
issues on which voters have decisive power, even if both decision rules have a
dictator on each issue.9

In fact, from the proof of Theorem 1, it is easy to see that the same problem
is valid for any inequality index that satisfies both SEP and Anonymity (AN).
AN and SEP are both reasonable if an inequality index evaluates the a priori
voting powers of various voters and relates to a von Neumann–Morgenstern
preference from a normative viewpoint. Therefore, one possible approach in
addressing the problem is to apply nonexpected utility theory under uncertainty
(e.g., Gilboa and Schmeidler 1989) to the measurement of inequality of voting
powers; however, we leave this problem to future research.10
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9This problem has a structure similar to that of “positive dependency” between attributes
that characterize individuals’ well-being. That is, although inequality of voting powers can
be reduced only by deducing positive dependence between the row vectors of extended power
profiles, our inequality index does not satisfy this property. See Gajdos and Waymark (2005)
and Tsui (1999).

10See also Ben-Porath et al. (1997) and Gajdos and Maurin (2004) for the measurement of
inequality of income distributions under uncertainty.
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